Anatomical Characteristics of Norepinephrine Axons in the Prefrontal Cortex: Unexpected Findings That May Indicate Low Activity State in Naïve Animals

  • Lee Ann H. Miner
  • Susan R. Sesack

The catecholamine norepinephrine (NE) critically regulates information processing within the central nervous system. Along with dopamine (DA) and serotonin (5-HT; 5-hydroxytryptamine), the NE system forms an essential component of the modulatory brainstem innervation that ascends directly to the cerebral cortex without first being relayed through the thalamus. Within the prefrontal cortex (PFC) in particular, NE is known to modulate the essential cognitive and affective functions of this region, with animal studies demonstrating that normal NE innervation to the PFC is necessary for working memory, attention, and arousal (Robbins, 1984; Aston-Jones et al., 1999; Berridge, 2001; Berridge and Waterhouse, 2003; Arnsten and Li, 2005; Lapiz and Morilak, 2006).


Attention Deficit Hyperactivity Disorder Prefrontal Cortex Tyrosine Hydroxylase Chronic Stress Locus COERULEUS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, E.D. and Jacobs, B.L. (1987) Single-unit response of noradrenergic neurons in the locus coeruleus of freely-moving cats. I. Acutely presented stressful and nonstressful stimuli. J. Neurosci. 7, 2837-2843.PubMedGoogle Scholar
  2. Abercrombie, E.D., Keller, R.W. and Zigmond, M.J. (1988) Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: pharmacological and behavioral studies. Neuroscience 27, 897-904.PubMedGoogle Scholar
  3. Abercrombie, E.D., Keefe, K.A., DiFrischia, D.S. and Zigmond, M.J. (1989) Differential effects of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J. Neurochem. 52, 1655-1658.PubMedGoogle Scholar
  4. Adell, A., Garcia-Marquez, C., Armario, A. and Gelpi, E. (1988) Chronic stress increases serotonin and noradrenaline in the rat brain and sensitizes their responses to further acute stress. J. Neurochem. 50, 1678-1681.PubMedGoogle Scholar
  5. Adell, A., Garcia-Marquez, C., Armario, A. and Gelpi, E. (1989) Chronic administration of clomipramine prevents the increase in serotonin and noradrenalin induced by chronic stress. Psychopharmacology 99, 22-26.PubMedGoogle Scholar
  6. Ader, J.-P., Room, P., Postema, F. and Korf, J. (1980) Bilateral diverging axon collaterals and contralateral projections from rat locus coeruleus neurons. J. Neural Transm. 49, 207-218.PubMedGoogle Scholar
  7. Angulo, J.A., Printz, D., Ledoux, M. and McEwen, B.S. (1991) Isolation stress increases tyrosine hydroxylase mRNA in the locus coeruleus and midbrain and decreases proen-kephalin mRNA in the striatum and nucleus accumbens. Molec. Brain Res. 11, 301-308.PubMedGoogle Scholar
  8. Anisman, H. and Zacharko, R.M. (1990) Multiple neurochemical and behavioral conse-quences of stressors: implications for depression. Pharmacol Therapeutics 46, 119-136.Google Scholar
  9. Aoki, C. (1992) Beta-adrenergic receptors: astrocytic localization in the adult visual cortex and their relation to catecholamine axon terminals as revealed by electron microscopic immunocytochemistry. J. Neurosci. 12, 781-792.PubMedGoogle Scholar
  10. Aoki, C., Go, C.-G., Venkatesan, C. and Kurose, H. (1994) Perikaryal and synaptic localiza-tion of alpha2A-adrenergic receptor-like immunoreactivity. Brain Res. 650, 181-204.PubMedGoogle Scholar
  11. Aoki, C., Venkatesan, C., Go, C.-G., Forman, R. and Kurose, H. (1998) Cellular and subcellu-lar sites for noradrenergic action in the monkey dorsolateral prefrontal cortex as revealed by the immunocytochemical localization of noradrenergic receptors and axons. Cereb. Cortex 8, 269-277.PubMedGoogle Scholar
  12. Apparsundaram, S., Schroeter, S., Giovanetti, E. and Blakely, R.D. (1998a) Acute regulation of norepinephrine transport. II. PKC-modulated surface expression of human norepineph-rine transporter proteins. J. Pharm. Exp. Ther. 287, 744-751.Google Scholar
  13. Apparsundaram, S., Galli, A., DeFelice, L.J., Hartzell, H.C. and Blakely, R.D. (1998b) Acute regulation of norepinephrine transport. I. Protein kinase C-linked muscarinic receptors influence transport capacity and transporter density in SK-N-SH cells. J. Pharm. Exp. Ther. 287, 733-743.Google Scholar
  14. Armstrong-James, M. and Fox, K. (1983) Effects of iontophoresed noradrenaline on the spon-taneous activity of neurons in rat primary somatosensory cortex. J. Physiol. 355, 427-447.Google Scholar
  15. Arnsten, A. and Goldman-Rakic, P. (1985) a2-Adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged non-human primates. Science 230, 1273-1276.PubMedGoogle Scholar
  16. Arnsten, A., Steere, J. and Hunt, R. (1996) The contribution of alpha2-noradrenergic mecha-nisms to prefrontal cortical cognitive function. Arch. Gen. Psychiatry 53, 448-455.PubMedGoogle Scholar
  17. Arnsten, A.F. (2000) Stress impairs prefrontal cortical function in rats and monkeys: Role of dopamine D1 and norepinephrine a-1 receptor mechanisms. Prog. Brain Res. 126, 183-192.PubMedGoogle Scholar
  18. Arnsten, A.F. and Li, B.M. (2005) Neurobiology of executive functions: Catecholamine influ-ences on prefrontal cortical functions. Biol. Psychiatry 57, 1377-1384.PubMedGoogle Scholar
  19. Arnsten, A.F., Steere, J.C., Jentsch, D.J. and Li, B.M. (1998) Noradrenergic influences on prefrontal cortical cognitive function: opposing actions at postjunctional alpha-1 versus alpha-2-adrenergic receptors. Adv. Pharmacol. 42, 764-767.PubMedGoogle Scholar
  20. Asan, E. (1993) Comparative single and double immunolabelling with antisera against cate-cholamine biosynthetic enzymes: criteria for the identification of dopaminergic, noradren-ergic and adrenergic structures in selected rat brain areas. Histochemistry 99, 427-442.PubMedGoogle Scholar
  21. Aston-Jones, G., Fajkowski, J. and Cohen, J. (1999) Role of the locus coeruleus in attention and behavioral flexibility. Biol. Psychiatry 46, 1309-1320.PubMedGoogle Scholar
  22. Aston-Jones, G., Zhu, Y. and Card, J.P. (2004) Numerous GABAergic afferents to locus ceruleus in the pericerulear dendritic zone: possible interneuronal pool. J. Neurosci. 24, 2313-2321.PubMedGoogle Scholar
  23. Aston-Jones, G., Valentino, R.J., VanBockstaele, E.J. and Meyerson, A.T. (1994) Locus coeruleus, stress, and PTSD: neurobiological and clinical parallels. In: M.M. Murbur (ed.), Catecholamine Function in PTSD: Emerging Concepts. American Psychiatric Press, Washington, DC, pp. 17-62.Google Scholar
  24. Audet, M.A., Doucet, G., Oleskevich, S. and Descarries, L. (1988) Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex. J. Comp. Neurol. 274, 307-318.PubMedGoogle Scholar
  25. Avery, R.A., Franowicz, J.S., Studholme, C., van Dyck, C.H. and Arnsten, A.F. (2000) The alpha-2A-adrenoceptor agonist, guanfacine, increases regional cerebral blood flow in dor-solateral prefrontal cortex of monkeys performing a spatial working memory task. Neuro-psychopharmacology 23, 240-249.Google Scholar
  26. Bauer, M.E. and Tejani-Butt, S.M. (1992) Effects of repeated administration of desipramine or electroconvulsive shock on norepinephrine uptake sites measured by [3H] nisoxetine autoradiography. Brain Res. 582, 208-214.PubMedGoogle Scholar
  27. Beaudet, A. and Descarries, L. (1978) The monoamine innervation of rat cerebral cortex: synaptic and nonsynaptic axon terminals. Neuroscience 3, 851-860.PubMedGoogle Scholar
  28. Beaudet, A. and Descarries, L. (1984) Fine structure of monoamine axon terminals in cerebral cortex. In: L. Descarries, T.R. Reader and H.H. Jasper (eds.), Monoamine Innervation of the Cerebral Cortex. Liss, New York, pp. 77-93.Google Scholar
  29. Benmansour, S., Altamirano, A.V., Jones, D.J., Sanchez, T.A., Gould, G.G., Pardon, M.-C., Morilak, D.A. and Frazer, A. (2004) Regulation of the norepinephrine transporter by chronic administration of antidepressants. Biol. Psychiatry 55, 313-316.PubMedGoogle Scholar
  30. Berridge, C.W. (2001) Arousal and attention-related actions of the locus coeruleus-noradrenergic system: potential target in the therapeutic actions of amphetamine-like stimulants. In: M.V. Solanto, A.F.T. Arnsten and F.X. Castellanos (eds.), Stimulant Drugs and ADHD. Oxford University, New York, pp. 158-184.Google Scholar
  31. Berridge, C.W. and Waterhouse, B.D. (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Rev. 42, 33-84.Google Scholar
  32. Biederman, J. and Spencer, T. (1999) Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol. Psychiatry 46, 1234-1242.PubMedGoogle Scholar
  33. Birnbaum, S.G., Gobeske, K.T., Auerbach, J., Taylor, J.R. and Arnsten, A.F. (1999) A role for norepinephrine in stress-induced cognitive deficits: a-1-adrenoceptor mediation in the pre-frontal cortex. Biol. Psychiatry 46, 1266-1274.PubMedGoogle Scholar
  34. Blakely, R.D. and Bauman, A.L. (2000) Biogenic amine transporters: regulation in flux. Curr. Opin. Neurobiol. 10, 328-336.PubMedGoogle Scholar
  35. Bremner, J.D., Krystal, K.H., Soutwick, S.M. and Charney, D.S. (1996) Noradrenergic mechanisms in stress and anxiety. II. Clinical studies. Synapse 23, 39-51.PubMedGoogle Scholar
  36. Brown, E.R., Coker, G.T. and O’Malley, K.L. (1987) Organization and evolution of the rat tyrosine hydroxylase gene. Biochemistry 26, 5208-5212.PubMedGoogle Scholar
  37. Bunney, B.S. and Aghajanian, G.K. (1976) Dopamine and norepinephrine innervated cells in the rat prefrontal cortex: pharmacological differentiation using microiontophoretic tech-niques. Life Sci. 19, 1783-1792.PubMedGoogle Scholar
  38. Bymaster, F.P., Katner, J.S., Nelson, D.L., Hemrick-Luecke, S.K., Threlkeld, P.G., Heiligenstein, J.H., Morin, S.M., Gehlert, D.R. and Perry, K.W. (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in the prefrontal cortex of the rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27, 699-711.PubMedGoogle Scholar
  39. Callado, L.F., Meana, J.J. and Grijalba, B. (1998) Selective increase of alpha2-adrenoceptor agonist binding sites in brains of depressed suicide victims. J. Neurochem. 70, 1114-1123.PubMedGoogle Scholar
  40. Campbell, D.G., Hardie, D.G. and Vulliet, P.R. (1986) Identification of the four phosphoryla-tion sites in the N-terminal region of tyrosine hydroxylase. J. Biol. Chem. 261, 10489-10492.PubMedGoogle Scholar
  41. Cass, W.A. and Gerhardt, G.A. (1995) In vivo assessment of dopamine uptake in rat medial prefrontal cortex: comparison with dorsal striatum and nucleus accumbens. J. Neurochem. 65, 201-207.PubMedGoogle Scholar
  42. Charney, D.S., Bremner, J.D. and Redmond, D.E. (1995) Noradrenergic substrates for anxiety and fear. In: F.E. Bloom and D.J. Kupfer (eds.), Psychopharmacology: The Fourth Gen-eration of Progress. Raven Press, New York, pp. 387-395.Google Scholar
  43. Christenson, J.G., Dairman, W. and Udenfriend, S. (1972) On the identity of DOPA decar-boxylase and 5-hydroxytryptophan decarboxylase. Proc. Natl. Acad. Sci. 69, 343-347.PubMedGoogle Scholar
  44. Ciliax, B., Heilman, C., Demchyshyn, L., Pristupa, Z., Ince, E., Hersch, S., Niznik, H. and Levey, A. (1995) The dopamine transporter: immunocytochemical characterization and localization in brain. J. Neurosci. 15, 1714-1723.PubMedGoogle Scholar
  45. Conti, L.H. and Foote, S.L. (1996) Reciprocal cross-desensitization of locus coeruleus elec-trophysiological responsivity to corticotrophin-releasing factor and stress. Brain Res. 722, 19-29.PubMedGoogle Scholar
  46. Cooper, J.R., Bloom, F.E. and Roth, R.H. (1991) The Biochemical Basis of Neuropharmacol-ogy, 6th Edition. New York: Oxford University Press.Google Scholar
  47. Cordero, M.I., Kruyt, N.D. and Sandi, C. (2003) Modulation of contextual fear conditioning by chronic stress in rats is related to individual differences in behavioral reactivity to nov-elty. Brain Res. 970, 242-245.PubMedGoogle Scholar
  48. Curtis, A.L., Pavcovich, L.A., Grigoriadis, D.E. and Valentino, R.J. (1995) Previous stress alters corticotropin-releasing factor neurotransmission in the locus coeruleus. Neurosci-ence 65, 541-550.Google Scholar
  49. Descarries, L. and Mechawar, N. (2000) Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog. Brain Res. 125, 27-47.PubMedGoogle Scholar
  50. Descarries, L., Watkins, K. and Lapierre, Y. (1977) Noradrenergic axon terminals in the cere-bral cortex of rat. III. Topometric ultrastructural analysis. Brain Res. 133, 197-222.PubMedGoogle Scholar
  51. Descarries, L., Reader, T.A. and Jasper, H.H., eds (1984) Monoamine Innervation of Cerebral Cortex. Alan R. Liss, New York.Google Scholar
  52. Drevets, W.C., Videen, T.O., Price, J.L., Preskorn, S.H., Carmichael, S.T. and Raichle, M.E. (1992) A functional anatomical study of unipolar depression. J. Neurosci. 12, 3628-3641.PubMedGoogle Scholar
  53. Emson, P.C. and Koob, G.F. (1978) The origin and distribution of dopamine-containing affer-ents to the rat prefrontal cortex. Brain Res. 142, 249-267.PubMedGoogle Scholar
  54. Ernst, M., Liebenauer, L., King, A., Fitzgerald, G.A., Cohen, R.A. and Zametkin, A.J. (1994) Reduced brain metabolism in hyperactive girls. J. Am. Acad. Child Adolesc. Psychiatry 33, 858-868.PubMedGoogle Scholar
  55. Fallon, J.H. and Loughlin, S.E. (1982) Monoamine innervation of the forebrain: collateraliza-tion. Brain Res. Bull. 9, 295-307.Google Scholar
  56. Fallon, J.H. and Loughlin, S.E. (1987) Monoamine innervation of cerebral cortex and a theory of the role of monoamines in cerebral cortex and basal ganglia. In: E.G. Jones and A. Peters (eds.), Cerebral Cortex. Plenum, New York, pp. 41-127.Google Scholar
  57. Feenstra, M.G.P., Botterblom, M.H.A. and Matenbroek, S. (2000) Dopamine and noradrena-line efflux in the prefrontal cortex in light and dark period: effects of novelty and handling and comparisons to the nucleus accumbens. Neuroscience 100, 741-748.PubMedGoogle Scholar
  58. Finlay, J.M., Zigmond, M.J. and Abercrombie, E.D. (1995) Increased dopamine and norepi-nephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience 64, 619-628.PubMedGoogle Scholar
  59. Finlay, J.M., Jedema, H.P., Rabinovic, A.D., Mana, M.J., Zigmond, M.J. and Sved, A.F. (1997) Impact of corticotropin-releasing hormone on extracellular norepinephrine in pre-frontal cortex after chronic cold stress. J. Neurochem. 69, 144-150.PubMedCrossRefGoogle Scholar
  60. Foote, S.L. (1985) Anatomy and physiology of brain monoamine systems. Psychiatry 3, 1-14.Google Scholar
  61. Foote, S.L., Bloom, F.E. and Oliver, A.P. (1975) Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex. Brain Res. 86, 229-242.PubMedGoogle Scholar
  62. Foote, S.L., Bloom, F.E. and Aston-Jones, G. (1983) Nucleus locus coeruleus: new evidence of anatomical and physiological specificity. Physiol. Rev. 63, 844-914.PubMedGoogle Scholar
  63. Frazer, A. (2000) Norepinephrine involvement in antidepressant action. J. Clin. Psychiat. 61 (Suppl 10), 25-30.Google Scholar
  64. Frazer, A. and Benmansour, S. (2002) Delayed pharmacological effects of antidepressants. Mol. Psychiatry 7, S23-S28.PubMedGoogle Scholar
  65. Gambarana, C., Scheggi, S., Tagliamonte, A., Tolu, P. and DeMontis, M.G. (2001) Animal models for the study of antidepressant activity. Br. Res. Protocols 7, 11-20.Google Scholar
  66. Garris, P.A. and Wightman, R.M. (1994) Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltametric study. J. Neurosci. 14, 442-450.PubMedGoogle Scholar
  67. Garris, P.A., Collins, L.B., Jones, S.R. and Wightman, R.M. (1993) Evoked extracellular dopamine in vivo in the medial prefrontal cortex. J. Neurochem. 61, 637-647.PubMedCrossRefGoogle Scholar
  68. Gaspar, P., Berger, B., Febvret, A., Vigny, A. and Henry, J.P. (1989) Catecholamine innerva-tion of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J. Comp. Neurol. 279, 249-271.PubMedGoogle Scholar
  69. Goldman-Rakic, P.S., Lidow, M.S. and Gallager, D.W. (1990) Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complimentarity of their subtypes in the pri-mate prefrontal cortex. J. Neurosci. 10, 2125-2138.PubMedGoogle Scholar
  70. Grant, M.M. and Weiss, J.M. (2001) Effects of chronic antidepressant drug administration and electroconvulsive shock on locus coeruleus electrophysiological activity. Biol. Psychiatry 49, 117-129.PubMedGoogle Scholar
  71. Gresch, P.J., Sved, A.F., Zigmond, M.J. and Finlay, J.M. (1994) Stress-induced sensitization of dopamine and norepinephrine efflux in medial prefrontal cortex of the rat. J. Neuro-chem. 63, 575-583.Google Scholar
  72. Gresch, P.J., Sved, A.F., Zigmond, M.J. and Finlay, J.M. (1995) Local influences of endoge-nous norepinephrine on extracellular dopamine in rat medial prefrontal cortex. J. Neuro-chem. 65, 111-116.Google Scholar
  73. Grzanna, R. and Fritschy, J.-M. (1991) Efferent projections of different subpopulations of central noradrenergic neurons. In: C.D. Barnes and O. Pompeiano (eds.), Progress in Brain Research. Elsevier, New York, pp. 89-101.Google Scholar
  74. Gu, H.H., Wall, S. and Rudnick, G. (1996) Ion coupling stoichiometry for the norepinephrine transporter in membrane vesicles from stably transfected cells. J. Biol. Chem. 271, 6911-6919.PubMedGoogle Scholar
  75. Guitart, X., Kogan, J.H., Berhow, M., Terwilliger, R.Z., Aghajanian, G.K. and Nestler, E.J. (1993) Lewis and Fischer rat strains display differences in biochemical, electrophysiological and behavioral parameters: studies in the nucleus accumbens and locus coeruleus of drug naive and morphine-treated animals. Brain Res. 611, 7-17.PubMedGoogle Scholar
  76. Haycock, J.W. (1990) Involvement of serine-31 in phosphorylation of tyrosine hydroxylase in PC12 cells. J. Biol. Chem. 265, 11682-11691.PubMedGoogle Scholar
  77. Hebert, C., Habimana, A., Elie, R. and Reader, T.A. (2001) Effects of chronic antidepressant treatments on 5-HT and NA transporters in rat brain: an autoradiographic study. Neuro-chem. Int. 38, 63-74.Google Scholar
  78. Henry, J.P., Sagne, C., Bedet, C. and Gasnier, B. (1998) The vesicular monoamine transporter: from chromaffin granule to brain. Neurochem. Int. 32, 227-246.PubMedGoogle Scholar
  79. Hersch, S.M., Yi, H., Heilman, C.J., Edwards, R.H. and Levey, A.I. (1997) Subcellular local-ization and molecular topology of the dopamine transporter in the striatum and substantia nigra. J. Comp. Neurol. 388, 211-227.PubMedGoogle Scholar
  80. Hoffman, B.J., Hansson, S.R., Mezey, E. and Palkovits, M. (1998) Localization and dynamic regulation of biogenic amine transporters in the mammalian central nervous system. Front. Neuroendocrinol. 19, 187-231.PubMedGoogle Scholar
  81. Hökfelt, T., Johansson, O., Fuxe, K., Goldstein, M. and Park, D. (1977) Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain. II. Tyrosine hydroxylase in the telencephalon. Med. Biol. 55, 21-40.PubMedGoogle Scholar
  82. Horn, A.S. (1973) Structure-activity relations for the inhibition of catecholamine uptake into synaptosomes from noradrenaline and dopaminergic neurons in rat brain homogenates. Br. J. Pharmacol. 47, 332-338.PubMedGoogle Scholar
  83. Huang, Y.H., Maas, J.W. and Hu, G.H. (1980) The time course of noradrenergic pre- and postsynaptic activity during chronic desipramine treatment. Eur. J. Pharmacol. 68, 41-47.PubMedGoogle Scholar
  84. Ichikawa, S., Sasaoka, T. and Nagatsu, T. (1991) Primary structure of mouse tyrosine hydroxylase deduced from its cDNA. Biochem. Biophys. Res. Commun. 176, 1610-1616.PubMedGoogle Scholar
  85. Invernizzi, R.W., Parini, S., Sacchetti, G., Fracasso, C., Caccia, S., Annoni, K. and Samanin, R. (2001) Chronic treatment with reboxetine by osmotic pumps facilitates its effect on extracellular noradrenaline and may desensitize alpha2-adrenoceptors in the prefrontal cortex. Br. J. Pharmacol. 132, 183-188.PubMedGoogle Scholar
  86. Jayanthi, L.D., Samuvel, D.J. and Ramamoorthy, S. (2004) Regulated internalization and phosphorylation of the native norepinephrine transporter in response to phorbol esters: evidence for localization in lipid rafts and lipid raft-mediated internalization. J. Biol. Chem. 279, 19315-19326.PubMedGoogle Scholar
  87. Jedema, H., Sved, A., Zigmond, M. and Finlay, J. (1999) Sensitization of norepinephrine release in medial prefrontal cortex: effect of different chronic stress protocols. Brain Res. 830, 211-217.PubMedGoogle Scholar
  88. Jedema, H.P. and Grace, A.A. (2003) Chronic exposure to cold stress alters electrophysiologi-cal properties of locus coeruleus neurons recorded in vitro. Neuropsychopharmacology 28, 63-72.PubMedGoogle Scholar
  89. Jedema, H.P., Finlay, J.M., Sved, A.F. and Grace, A.A. (2001) Chronic cold exposure potenti-ates CRH-evoked increases in electrophysiologic activity of locus coeruleus neurons. Biol. Psychiatry 49, 351-359.PubMedGoogle Scholar
  90. Johnson, E.S., Roberts, M.H.T. and Straughan, D.W. (1969) The responses of cortical neu-rones to monoamines under differing anaesthetic conditions. J. Physiol. 203, 261-280.PubMedGoogle Scholar
  91. Jones, B.E. and Yang, T.Z. (1985) The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J. Comp. Neurol. 242, 56-92.PubMedGoogle Scholar
  92. Jordan, S., Kramer, G.L., Zukar, P.K., Moeller, M. and Petty, F. (1994) In vivo biogenic amine efflux in medial prefrontal cortex with imipramine, fluoxetine, and fluvoxamine. Synapse 18, 294-297.PubMedGoogle Scholar
  93. Kasamatu, T. and Heggelund, P. (1982) Single cell responses in cat visual cortex to visual stimulation during iontophoresis of noradrenaline. Exp. Brain Res. 45, 317-327.Google Scholar
  94. Kendler, K.S., Kessler, R.C., Walters, E.E., MacLean, C., Neale, M.C., Heath, A.C. and Eaves, L.J. (1995) Stressful life events, genetic liability, and onset of an episode of major depression in women. Am. J. Psychiatry 152, 833-842.PubMedGoogle Scholar
  95. Kent, J.M. (2000) SNaRIs, NaSSAs, and NaRIs: new agents for the treatment of depression. Lancet 355, 911-918.PubMedGoogle Scholar
  96. Klimek, V., Stockmeier, C., Overholser, J., Meltzer, H.Y., Kalka, S., Dilley, G. and Ordway, G.A. (1997) Reduced levels of norepinephrine transporters in the locus coeruleus in major depression. J. Neurosci. 17, 8451-8458.PubMedGoogle Scholar
  97. Komori, K., Kunimi, Y., Yamaoka, K., Ito, T., Kasahara, Y. and Nagatsu, I. (1992) Semiquan-titative analysis of immunoreactivities of tyrosine hydroxylase and aromatic L-amino acid decarboxylase in the locus coeruleus of desipramine-treated rats. Neurosci. Lett. 147.Google Scholar
  98. Korf, J., Aghaganian, G.K. and Roth, R.H. (1973) Increased turnover of norepinephrine in the rat cerebral cortex during stress: role of locus coeruleus. Neuropsychopharmacology 12, 933-938.Google Scholar
  99. Kritzer, M.F. (2000) Effects of acute and chronic gonadectomy on the catecholamine innerva-tion of the cerebral cortex in adult male rats: insensitivity of axons immunoreactive for dopamine-β-hydroxylase to gonadal steroids, and differential sensitivity of axons immuno-reactive for tyrosine hydroxylase to ovarian and testicular hormones. J. Comp. Neurol. 427, 617-633.PubMedGoogle Scholar
  100. Kritzer, M.F. (2003) Long term gonadectomy affects the density of tyrosine hydroxylase but not dopamine beta hydroxylase, choline acetyltransferase or serotonin immunoreactive axons in the medial prefrontal cortices of adult male rats. Cereb. Cortex 13, 282-296.PubMedGoogle Scholar
  101. Krnjevic, L. and Phillips, J.W. (1963a) Iontophoretic studies of neurons in the mammalian cerebral cortex. J. Physiol. 165.Google Scholar
  102. Krnjevic, L. and Phillips, J.W. (1963b) Actions of certain amines on cerebral cortical neurons. Brit J Pharmacol Chemother 20, 471-490.Google Scholar
  103. Lapiz, M.D.S. and Morilak, D.A. (2006) Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability. Neurosci-ence 137, 1039-1049.Google Scholar
  104. Law-Tho, D., Crepel, F. and Hirsch, J.C. (1993) Noradrenaline decreases transmission of NMDA- and non-NMDA-receptor mediated monosynaptic EPSPs in rat prefrontal neu-rons in vitro. Eur. J. Neurosci. 5, 1494-1500.PubMedGoogle Scholar
  105. Levitt, P. and Moore, R.Y. (1978) Noradrenaline neuron innervation of the neocortex in the rat. Brain Res. 139, 219-231.PubMedGoogle Scholar
  106. Lewis, D.A. and Morrison, J.H. (1989) Noradrenergic innervation of monkey prefrontal cor-tex: A dopamine-b-hydroxylase immunohistochemical study. J. Comp. Neurol. 282, 317-330.PubMedGoogle Scholar
  107. Lewis, D.A., Foote, S.L., Goldstein, M. and Morrison, J.H. (1988) The dopaminergic innerva-tion of monkey prefrontal cortex: a tyrosine hydroxylase immunocytochemical study. Brain Res. 449, 225-243.PubMedGoogle Scholar
  108. Lewis, D.A., Campbell, M.J., Foote, S.L., Goldstein, M. and Morrison, J.H. (1987) The distri-bution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J. Neurosci. 7, 279-290.PubMedGoogle Scholar
  109. Li, B.M. and Mei, Z.T. (1994) Delayed-response deficit induced by local injection of the alpha 2 adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys. Behav. Neural Biol. 62, 134-139.PubMedGoogle Scholar
  110. Li, B.M. and Kubota, K. (1998) Alpha-2 adrenergic modulation of prefrontal cortical neuronal activity related to a visual discrimination task with GO and NO-GO performances in mon-keys. Neurosci. Res. 31, 83-95.PubMedGoogle Scholar
  111. Lidov, H.G.W., Rice, F.L. and Molliver, M.E. (1978) The organization of the catecholamine innervation of somatosensory cortex: the barrel field of the mouse. Brain Res. 153, 577-584.PubMedGoogle Scholar
  112. Lindvall, O. and Björklund, A. (1984) General organization of cortical monoamine systems. In: L. Descarries, T. Reader and H. Jasper (eds.), Monoamine Innervation of the Cerebral Cortex. Liss, New York, pp. 9-40.Google Scholar
  113. Liprando, L.A., Miner, L.A.H., Blakely, R.D., Lewis, D.A. and Sesack, S.R. (2004) Ultra-structural interactions between terminals expressing the norepinephrine transporter and dopamine neurons in the rat and monkey ventral tegmental area. Synapse 52, 233-244.PubMedGoogle Scholar
  114. Liu, W., Yuen, E.Y., Allen, P.B., Feng, J., Greengard, P. and Yan, Z. (2006) Adrenergic modulation of NMDA receptors in prefrontal cortex is differentially regulated by RGS proteins and spinophilin. Proc. Natl. Acad. Sci. 103, 18338-18343.PubMedGoogle Scholar
  115. Lopez-Rubalcava, C. and Lucki, I. (2000) Strain differences in the behavioral effects of anti-depressant drugs in the forced swim test. Neuropsychopharmacology 22, 191-199.PubMedGoogle Scholar
  116. Lorang, D., Amara, S.G. and Simerly, R.B. (1994) Cell-type-specific expression of cate-cholamine transporters in the rat brain. J. Neurosci. 14, 4903-4914.PubMedGoogle Scholar
  117. Loughlin, S.E., Foote, S.L. and Fallon, J.H. (1982) Locus coeruleus projections to the cortex: topography, morphology and collaterization. Brain Res. Bull. 9, 287-294.Google Scholar
  118. Loughlin, S.E., Foote, S.L. and Bloom, F.E. (1986a) Efferent projections of nucleus locus coeruleus: topographic organization of cells of origin demonstrated by three dimensional reconstruction. Neuroscience 18, 291-306.PubMedGoogle Scholar
  119. Loughlin, S.E., Foote, S.L. and Grzanna, R. (1986b) Efferent projections of nucleus locus coeruleus: morphologic subpopulations have different efferent targets. Neuroscience 18, 307-319.PubMedGoogle Scholar
  120. Ma, C.L., Qi, X.L., Peng, J.Y. and Li, B.M. (2003) Selective deficit in no-go performance induced by blockade of prefrontal cortical alpha 2-adrenoceptors in monkeys. Neuroreport 14, 1013-1016.PubMedGoogle Scholar
  121. Mamalaki, E., Kvetnansky, R., Brady, L.S., Gold, P.W. and Herkenham, M. (1992) Repeated immobilization stress alters tyrosine hydroxylase, corticotropin-releasing hormone and corticosteroid receptor messenger ribonucleic acid levels in rat brain. J. Neuroendocrinol. 4, 689-699.Google Scholar
  122. Mana, M.J. and Grace, A.A. (1997) Chronic cold stress alters basal and evoked electrophysio-logical activity of rat locus coeruleus neurons. Neuroscience 81, 1055-1064.PubMedGoogle Scholar
  123. Mantz, J., Millla, C., Glowinski, J. and Thierry, A.M. (1988) Differential effects of ascending neurons containing dopamine and noradrenaline in control of spontaneous activity and of evoked responses in the rat prefrontal cortex. Neuroscience 27, 517-526.PubMedGoogle Scholar
  124. Mao, Z.M., Arnsten, A.F. and Li, B.M. (1999) Local infusion of an alpha-1 adrenergic agonist into the prefrontal cortex impairs spatial working memory performance in monkeys. Biol. Psychiatry 46, 1259-1265.PubMedGoogle Scholar
  125. Mason, S.T. and Figiber, H.C. (1979) Regional topography within noradrenergic locus coeruleus as revealed by retrograde transport of horseradish peroxidase. J. Comp. Neurol. 187, 703-724.PubMedGoogle Scholar
  126. McLean, J. and Waterhouse, B.D. (1994) Noradrenergic modulation of cat area 17 neuronal responses to moving visual stimuli. Brain Res. 667, 83-97.PubMedGoogle Scholar
  127. McMillen, B.A., Warnack, W., German, D.C. and Shore, P.A. (1980) Effects of chronic desip-ramine treatment on rat brain noradrenergic responses to alpha-adrenergic drugs. Eur. J. Pharmacol. 61, 239-246.PubMedGoogle Scholar
  128. Meana, J.J., Baruren, F. and Garcia-Sevilla, J.A. (1992) Alpha2-adrenoceptors in the brain of suicide victims: increased receptor density associated with major depression. Biol. Psy-chiatry 31, 471-490.Google Scholar
  129. Mejias-Aponte, C.A., Zhu, Y. and Aston-Jones, G. (2004) Noradrenergic innervation of mid-brain dopamine neurons: prominent inputs from A1 and A2 cell groups. Soc. Neurosci. Abstr. 465.4.Google Scholar
  130. Melia, K.R., Nestler, E.J. and Duman, R.S. (1992a) Chronic imipramine treatment normalizes levels of tyrosine hydroxylase in the locus coeruleus of chronically stress rats. Psy-chopharmacology 108, 23-26.Google Scholar
  131. Melia, K.R., Rasmussen, K., Terwilliger, R.Z., Haycock, J.W., Nestler, E.J. and Duman, R.S. (1992b) Coordinate regulation of the cyclic AMP system with firing rate and expression of tyrosine hydroxylase in the rat locus coeruleus: effects of chronic stress and drug treatment. J. Neurochem. 58, 494-502.PubMedGoogle Scholar
  132. Melikian, H.E., Ramamoorthy, S., Tate, C.G. and Blakely, R.D. (1996) Inability to N glycosy-late the human norepinephrine transporter reduces protein stability, surface trafficking, and transport activity but not ligand recognition. Mol. Pharm. 50, 266-276.Google Scholar
  133. Melikian, H.E., McDonald, J.K., Gu, H., Rudnick, G., Moore, K.R. and Blakely, R.D. (1994) Human norepinephrine transporter. Biosynthetic studies using a site-directed polyclonal antibody. J. Biol. Chem. 269, 12290-12297.PubMedGoogle Scholar
  134. Michelson, D., Adler, L., Spencer, T., Reimherr, F.W., West, S.A., Allen, A.J., Kelsey, D., Wernicke, J., Dietrich, A. and Milton, D. (2003) Atomoxetine in adults with ADHD: two randomized, placebo-controlled studies. Biol. Psychiatry 53, 112-120.PubMedGoogle Scholar
  135. Milner, T.A. and Bacon, C.E. (1989) Ultrastructural localization of tyrosine hydroxylase-like immunoreactivity in the rat hippocampal formation. J. Comp. Neurol. 281, 479-495.PubMedGoogle Scholar
  136. Miner, L.A.H., Schroeter, S., Blakely, R.D. and Sesack, S.R. (2000) Ultrastructural localiza-tion of the serotonin transporter in superficial and deep layers of the rat prelimbic prefron-tal cortex and its spatial relationship to dopamine terminals. J. Comp. Neurol. 427, 220-234.PubMedGoogle Scholar
  137. Miner, L.A.H., Schroeter, S., Blakely, R.D. and Sesack, S.R. (2003) Ultrastructural localiza-tion of the norepinephrine transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to probable dopamine terminals. J. Comp. Neurol. 466, 478-494.PubMedGoogle Scholar
  138. Miner, L.A.H., Jedema, H.P., Moore, F.W., Blakely, R.D., Grace, A.A. and Sesack, S.R. (2006) Chronic stress increases the plasmalemmal distribution of the norepinephrine transporter and coexpression of tyrosine hydroxylase in norepinephrine axons in the pre-frontal cortex. J. Neurosci. 26, 1571-1578.PubMedGoogle Scholar
  139. Moller, H.-J. (2000) Are all antidepressants the same? J. Clin. Psychiat. 61 (Suppl 10), 24-27.Google Scholar
  140. Molliver, M.E., Grzanna, R., Lidov, H.G.W., Morrison, J.H. and Olschowka, J.A. (1982) Monoamine systems in the cerebral cortex. In: V. Chan-Palay and S.L. Palay (eds.), Cyto-chemical Methods in Neuroanatomy. Liss, New York, pp. 255-277.Google Scholar
  141. Moore, H., Rose, H.J. and Grace, A.A. (2001) Chronic cold stress reduces the spontaneous activity of ventral tegmental dopamine neurons. Neuropsychopharmacology 24, 410-419.PubMedGoogle Scholar
  142. Morrison, J.H., Molliver, M.E. and Grzanna, R. (1979) Noradrenergic innervation of cerebral cortex: widespread effects of locus cortical lesions. Science 202, 313-316.Google Scholar
  143. Morrison, J.H., Foote, S.L. and Bloom, F.E. (1984) Regional, laminar, developmental and functional characteristics of noradrenaline and serotonin innervation patterns in monkey cortex. In: L. Descarries, T.A. Reader and H.H. Jasper (eds.), Monoamine Innervation of Cerebral Cortex. Liss, New York, pp. 61-75.Google Scholar
  144. Morrison, J.H., Grzanna, R., Molliver, M.E. and Coyle, J.T. (1978) The distribution and orien-tation of noradrenergic fibers in the neocortex of the rat: an immunofluorescence study. J. Comp. Neurol. 181, 17-40.PubMedGoogle Scholar
  145. Morrison, J.H., Molliver, M.E., Grzanna, R. and Coyle, J.T. (1981) The intracortical trajectory of the coeruleo-cortical projection in the rat: a tangentially organized afferent. Neurosci-ence 6, 139-158.Google Scholar
  146. Morrison, J.H., Foote, S.L., O’Conner, D. and Bloom, F.E. (1982) Laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: dopamine b-hydroxylase immunohistochemistry. Brain Res. Bull. 9, 309-319.Google Scholar
  147. Morruzzi, A.S. and Hart, E.R. (1955) Evoked cortical responses under the influence of hallu-cinogens and related drugs. Electroencephalgr. Clin. Neurophysiol. 1.Google Scholar
  148. Mostofsky, S.H., Cooper, K.L., Kates, W.R., Denckla, M.B. and Kaufmann, W.E. (2002) Smaller prefrontal and premotor volumes in boys with attention-deficit/hyperactivity dis-order. Biol. Psychiatry 52, 785-794.PubMedGoogle Scholar
  149. Nagai, T.K., Satoh, K., Imamoto, K. and Maeda, T. (1981) Divergent projections of cate-cholamine neurons of the locus coeruleus as revealed by fluorescent retrograde double labeling technique. Neurosci. Lett. 23, 117-123.PubMedGoogle Scholar
  150. Nelson, J.C. (1999) A review of the efficacy of serotonergic and noradrenergic reuptake in-hibitors for treatment of major depression. Biol. Psychiatry 46, 1301-1308.PubMedGoogle Scholar
  151. Nestler, E.J., McMahon, A., Sabban, E.L., Tallman, J.F. and Duman, R.S. (1990) Chronic antidepressant administration decreases the expression of tyrosine hydroxylase in the rat locus coeruleus. Proc. Natl. Acad. Sci. 87, 7522-7526.PubMedGoogle Scholar
  152. Nicholas, A.P., Pieribone, V.A. and Hokfelt, T. (1993a) Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: an in situ hybridization study. Neuroscience 56, 1023-1039.PubMedGoogle Scholar
  153. Nicholas, A.P., Pieribone, V. and Holkfelt, T. (1993b) Distribution of mRNA for alpha2-adrenergic receptor subtypes in rat brain: an in situ hybridization study. J. Comp. Neurol. 328, 575-594.PubMedGoogle Scholar
  154. Nirenberg, M.J., Vaughan, R.A., Uhl, G.R., Kuhar, M.J. and Pickel, V.M. (1996) The dopa-mine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J. Neurosci. 16, 436-447.PubMedGoogle Scholar
  155. Nisenbaum, L.K., Zigmond, M.J., Sved, A.F. and Abercrombie, E.D. (1991) Prior exposure to chronic stress results in enhanced synthesis and release of hippocampal norepinephrine in response to a novel stressor. J. Neurosci. 11, 1478-1484.PubMedGoogle Scholar
  156. Noack, H.J. and Lewis, D.A. (1989) Antibodies directed against tyrosine hydroxylase differ-entially recognize noradrenergic axons in monkey neocortex. Brain Res. 500, 313-324.PubMedGoogle Scholar
  157. Nutt, D.J., Lalies, M.D., Lione, L.A. and Hudson, A.L. (1997) Noradrenergic mechanisms in the prefrontal cortex. J. Psychopharmacol. 11, 163-168.PubMedGoogle Scholar
  158. Olschowka, J.A., Molliver, M.E., Grzanna, R., Rice, F.L. and Coyle, J.T. (1981) Ultrastruc-tural demonstration of noradrenergic synapses in the rat central nervous system by dopa-mine-b-hydroxylase immunocytochemistry. J. Histochem. Cytochem. 29, 271-280.PubMedGoogle Scholar
  159. Ossowska, G., Nowak, G., Kata, R., Klenk-Majewska, B., Canilczuk, Z. and Zebrowska-Lupina, I. (2001) Brain monoamine receptors in a chronic unpredictable stress model in rats. J. Neural Transm. 108, 311-319.PubMedGoogle Scholar
  160. Page, M.E. and Lucki, I. (2002) Effects of acute and chronic reboxetine treatment on stress-induced monoamine efflux in the rat frontal cortex. Neuropsychopharmacology 27, 237-247.PubMedGoogle Scholar
  161. Palacios, J.M. and Kuhar, M.J. (1980) Beta-adrenergic-receptor localization by light micro-scopic autoradiography. Science 208, 1378-1380.PubMedGoogle Scholar
  162. Palacios, J.M. and Kuhar, M.J. (1982) Beta-adrenergic receptor localization by light micro-scopic autoradiography. Neurochem. Int. 4, 473-490.PubMedGoogle Scholar
  163. Palacios, J.M. and Wamsley, J.K. (1983) Microscopic localization of adrenoreceptors. In: G. Kinos (ed.), Adrenoreceptors and Catecholamine Action, Part B. Wiley, New York, pp. 295-313.Google Scholar
  164. Palacios, J.M. and Wamsley, J.K. (1984) Catecholamine receptors. In: A. Bjorklund, T. Hok-felt and M.J. Kuhar (eds.), Handbook of Chemical Neuroanatomy, Vol. 3.: Classical Transmitters and Transmitter Receptors in the CNS, Part II. Elsevier, New York, pp. 325-351.Google Scholar
  165. Papadopoulos, G., Parnavelas, J. and Bujis, R. (1989) Light and electron microscopic immu-nocytochemical analysis of the noradrenaline innervation of the rat visual cortex. J. Neurocytol. 18, 1-10.PubMedGoogle Scholar
  166. Papadopoulos, G.C. and Parnavelas, J.G. (1991) Monoamine systems in the cerebral cortex: evidence for anatomical specificity. Prog. Neurobiol. 36, 195-200.PubMedGoogle Scholar
  167. Papp, M., Moryl, E. and Wilner, P. (1996) Pharmacological validation of the chronic mild stress model of depression. Eur. J. Pharmacol. 296, 129-136.PubMedGoogle Scholar
  168. Pardon, M.-C., Gould, G.G., Garcia, A., Phillips, L., Cook, M.C., Miller, S.A., Mason, P.A. and Morilak, D.A. (2002) Stress reactivity of the brain noradrenergic system in three rat strains differing in their neuroendocrine and behavioral responses to stress: implications for susceptibility to stress-related neuropsychiatric disorders. Neuroscience 115, 229-242.PubMedGoogle Scholar
  169. Pare, W.P. (1994) Open field, learned helplessness, defensive burying and forced-swim test in WKY rats. Physiol. Behav. 55, 433-439.PubMedGoogle Scholar
  170. Parnavelas, J., Moises, H. and Speciale, S. (1985) The monoaminergic innervation of the rat visual cortex. Proc. Royal Soc. Lond. 223, 319-329.Google Scholar
  171. Pavcovich, L.A. and Ramirez, O.A. (1991) Time course of uncontrollable stress in locus coeruleus neuronal activity. Brain Res. Bull. 26, 17-21.Google Scholar
  172. Pickel, V.M., Segal, M. and Bloom, F.E. (1974) A radioautographic study of the efferent pathways of the nucleus locus coeruleus. J. Comp. Neurol. 155, 15-42.PubMedGoogle Scholar
  173. Pickel, V.M., Joh, T.H. and Reis, D.J. (1975a) Ultrastructural localization of tyrosine hydroxy-lase in noradrenergic neurons of brain. Proc. Natl. Acad. Sci. 72, 659-663.PubMedGoogle Scholar
  174. Pickel, V.M., Joh, T.H. and Reis, D.J. (1975b) Immunohistochemical localization of tyrosine hydroxylase in brain by light and electron microscopy. Brain Res. 85, 295-300.PubMedGoogle Scholar
  175. Pickel, V.M., Joh, T.H., Field, P.M., Becker, C.G. and Reis, D.J. (1975c) Cellular localization of tyrosine hydroxylase by immunocytochemistry. J. Histochem. Cytochem. 23, 1-12.PubMedGoogle Scholar
  176. Pliszka, S.R., McCracken, J.T. and Maas, J.W. (1996) Catecholamines in attention-deficit hyperactivity disorder: current prospectives. J. Am. Acad. Child Adolesc. Psychiatry 35, 264-272.PubMedGoogle Scholar
  177. Raiteri, M., Del Carmine, R., Bertollini, A. and Levi, G. (1977) Effect of sympathomimetic amines on the synaptosomal transport of noradrenaline, dopamine and 5-hydroxytrypt-amine. Eur. J. Pharmacol. 41, 133-143.PubMedGoogle Scholar
  178. Rauch, S.L., Shin, L.M., Segal, E., Pitman, R.K., Carson, M.A., McMullin, K., Whalen, P.J. and Makris, N. (2003) Selectively reduced regional cortical volumes in post-traumatic stress disorder. Neuroreport 14, 913-916.PubMedGoogle Scholar
  179. Reader, T., Ferron, A., Descarries, L. and Jasper, H. (1979) Modulatory role for biogenic amines in the cerebral cortex. Microiontophoretic studies. Brain Res. 160, 217-229.PubMedGoogle Scholar
  180. Ren, Z.G., Porzgen, P., Zhang, J.M., Chen, X.R., Amara, S.G., Blakely, R.D. and Sieber-Blum, M. (2001) Autocrine regulation of norepinephrine transporter expression. Mol. Cell. Neurosci. 17, 539-550.PubMedGoogle Scholar
  181. Rex, A., Sondern, U., Voight, J.P., Franck, S. and Fink, H. (1996) Strain differences in fear-motivated behavior of rats. Pharmacol. Biochem. Behav. 54, 107-111.PubMedGoogle Scholar
  182. Robbins, T.W. (1984) Cortical noradrenaline, attention and arousal. Psychol. Med. 14, 13-21.PubMedGoogle Scholar
  183. Room, P., Postema, F. and Korf, J. (1981) Divergent axon collaterals of rat locus coeruleus neurons: demonstration by a fluorescent double labeling technique. Brain Res. 221.Google Scholar
  184. Rosario, L.A. and Abercrombie, E.D. (1999) Individual differences in behavioral reactivity: correlation with stress-induced norepinephrine efflux in the hippocampus of Sprague-Dawley rats. Brain Res. Bull. 48, 595-602.Google Scholar
  185. Rossetti, Z.L., Pani, L., Portas, C. and Gessa, G. (1989) Brain dialysis provides evidence for D2-dopamine receptors modulating noradrenaline release in the rat frontal cortex. Eur. J. Pharmacol. 163, 393-395.PubMedGoogle Scholar
  186. Rusnak, M., Zorad, S., Buckendahl, P., Sabban, E.L. and Kvetnansky, R. (1998) Tyrosine hydroxylase mRNA levels in locus coeruleus of rats during adaption to long-term immobi-lization stress exposure. Mol. Chem. Neuropath. 33, 249-258.Google Scholar
  187. Russell, V., Allie, S. and Wiggins, T. (2000) Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder - the sponta-neously hypertensive rat. Behav. Brain Res. 117, 69-74.PubMedGoogle Scholar
  188. Sacchetti, G., Bernini, M., Bianchetti, A., Parini, S., Invernizzi, R.M. and Samanin, R. (1999) Studies on the acute and chronic effects of reboxetine on extracellular noradrenaline and other monoamines in the rat brain. Br. J. Pharmacol. 128, 1332-1338.PubMedGoogle Scholar
  189. Savchenko, V., Sung, U. and Blakely, R.D. (2003) Cell surface trafficking of the antidepres-sant-sensitive norepinephrine transporter revealed with an ectodomain antibody. Mol. Cell. Neurosci. 24, 1131-1150.PubMedGoogle Scholar
  190. Sawaguchi, T. (1998) Attenuation of delay-period activity of monkey prefrontal neurons by an alpha2-adrenergic antagonist during an oculomotor delayed-response task. J. Neuro-physiol. 80, 2200-2205.Google Scholar
  191. Sawaguchi, T. and Matsumura, M. (1985) Laminar distribution of neurons sensitive to acetyl-choline, noradrenaline and dopamine in the dorsolateral prefrontal cortex of the monkey. Neurosci. Res. 2, 255-273.PubMedGoogle Scholar
  192. Schmidt, R.H. and Bhatnagar, R.K. (1979) Assessment of the effects of neonatal subcutaneous 6-hydroxydopamine on noradrenergic and dopaminergic innervation of the cerebral cor-tex. Brain Res. 166, 309-319.PubMedGoogle Scholar
  193. Schroeter, S., Apparsundaram, S., Wiley, R.G., Miner, L.A.H., Sesack, S.R. and Blakely, R.D. (2000) Immunolocalization of the cocaine- and antidepressant-sensitive 1-norepinephrine transporter. J. Comp. Neurol. 420, 211-232.PubMedGoogle Scholar
  194. Séguéla, P., Watkins, K.C. and Descarries, L. (1988) Ultrastructural features of dopamine axon terminals in the anteromedial and the suprarhinal cortex of adult rat. Brain Res. 442, 11-22.PubMedGoogle Scholar
  195. Séguéla, P., Watkins, K.C. and Descarries, L. (1989) Ultrastructural relationships of serotonin axon terminals in the cerebral cortex of the adult rat. J. Comp. Neurol. 289, 129-142.PubMedGoogle Scholar
  196. Séguéla, P., Watkins, K.C., Geffard, M. and Descarries, L. (1990) Noradrenaline axon termi-nals in adult rat neocortex: an immunocytochemical analysis in serial thin sections. Neuro-science 35, 249-264.Google Scholar
  197. Sesack, S.R., Snyder, C.L. and Lewis, D.A. (1995) Axon terminals immunolabeled for dopa-mine or tyrosine hydroxylase synapse on GABA-immunoreactive dendrites in rat and monkey cortex. J. Comp. Neurol. 363, 264-280.PubMedGoogle Scholar
  198. Sesack, S.R., Miner, L.A.H. and Omelchenko, N. (2006) Pre-embedding immunoelectron microscopy: applications for studies of the nervous system. In: L. Zaborszky, F.G. Wouterlood and J.L. Lanciego (eds.), Neuroanatomical Tract-Tracing 3: Molecules, Neu-rons, Systems. Springer, New York, pp. 6-71.Google Scholar
  199. Sesack, S.R., Hawrylak, V.A., Matus, C., Guido, M.A. and Levey, A.I. (1998) Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunore-activity for the dopamine transporter. J. Neurosci. 18, 2697-2708.PubMedGoogle Scholar
  200. Shin, L.M., Whalen, P.J., Pitman, R.K., Bush, G., Macklin, M.l., Lasko, N.B., Orr, S.P., McInerney, S.C. and Rauch, S.L. (2001) An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biol. Psychiatry 50, 932-942.PubMedGoogle Scholar
  201. Shores, M.M., Szot, P. and Veith, R.C. (1994) Desipramine-induced increase in norepineph-rine transporter mRNA is not mediated via alpha2 receptors. Molec. Brain Res. 27, 337-341.PubMedGoogle Scholar
  202. Simpson, K.L., Waterhouse, B.D. and Lin, R.C. (2006) Characterization of neurochemically specific projections from the locus coeruleus with respect to somatosensory-related bar-rels. Anat. Rec. Part A 288A, 166-173.Google Scholar
  203. Simpson, K.L., Altman, D.W., Wang, L., Kirifides, M.L., Lin, R.C. and Waterhouse, B.D. (1997) Lateralization and functional organization of the locus coeruleus projection to the trigeminal somatosensory pathway in rat. J. Comp. Neurol. 385, 135-147.PubMedGoogle Scholar
  204. Simson, P.E. and Weiss, J.M. (1988) Altered activity of the locus coeruleus in an animal model of depression. Neuropsychopharmacology 1, 287-294.PubMedGoogle Scholar
  205. Soares, J.C. and Mann, J.J. (1997) The functional neuroanatomy of mood disorders. J. Psychi-atric Res. 31, 393-432.Google Scholar
  206. Solanto, M.V. (1998) Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav. Brain Res. 94, 127-152.PubMedGoogle Scholar
  207. Southwick, S.M., Bremner, J.D., Rasmusson, A., Morgan, D.A., Arnsten, A.F.T. and Charney, D.S. (1999) Role of norepinephrine in the pathophysiology and treatment of posttraumatic stress disorder. Biol. Psychiatry 46, 1192-1204.PubMedGoogle Scholar
  208. Southwick, S.M., Krystal, J.H., Morgan, C.A., Johnson, D.R., Nagy, L.M., Nicolaou, A., Heninger, G.R. and Charney, D. (1993) Abnormal noradrenergic function in posttraumatic stress disorder. Arch. Gen. Psychiatry 50, 266-274.PubMedGoogle Scholar
  209. Spencer, T., Biederman, J., Coffey, B., Geller, D., Crawford, M., Bearman, S.K., Tarazi, B. and Faraone, S.V. (2002) A double-blind comparison of desipramine and placebo in children and adolescents with chronic Tic disorder and comorbid attention-deficit/ hyperactivity disorder. Arch. Gen. Psychiatry 59, 649-656.PubMedGoogle Scholar
  210. Stanford, S.C. (1995) Central noradrenergic neurons and stress. Pharmacol Therapeutics 68, 297-242.Google Scholar
  211. Steindler, D.A. (1981) Locus coeruleus neurons have axons that branch to the forebrain and cerebellum. Brain Res. 223, 367-373.PubMedGoogle Scholar
  212. Stone, E.A., Freedman, L.S. and Morgano, L.E. (1978) Brain and adrenal tyrosine hydroxylase activity after chronic footshock stress. Pharmacol. Biochem. Behav. 9, 551-553.PubMedGoogle Scholar
  213. Sung, U., Apparsundaram, S., Galli, A., Kahlig, K.M., Savchenko, V., Schroeter, S., Quick, M.W. and Blakely, R.D. (2003) A regulated interaction of syntaxin 1A with the antidepressant-sensitive norepinephrine transporter establishes catecholamine clearance capacity. J. Neurosci. 23, 1697-1709.PubMedGoogle Scholar
  214. Svensson, T.H. and Udin, T. (1978) Feedback inhibition of brain noradrenaline neurons by tricyclic antidepressants: alpha-receptor mediation. Science 202, 1089-1091.PubMedGoogle Scholar
  215. Swanson, L.W. and Hartman, B.K. (1975) The central adrenergic system. An immunofluores-cence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-B-hydroxylase as a marker. J. Comp. Neurol. 163, 467-487.PubMedGoogle Scholar
  216. Szabo, S.T. and Blier, P. (2001) Effect of the selective noradrenergic reuptake inhibitor re-boxetine on the firing activity of noradrenaline and serotonin neurons. Eur. J. Neurosci. 13, 2077-2087.PubMedGoogle Scholar
  217. Szot, P., Ashliegh, E.A., Kohen, R., Petrie, E., Dorsa, D.M. and Veith, R. (1993) Norepineph-rine transporter mRNA is elevated in the locus coeruleus following short- and long-term desipramine treatment. Brain Res. 618, 308-312.PubMedGoogle Scholar
  218. Tanda, G., Pontier, F.E., Frau, R. and DiChiara, G. (1997) Contribution of blockade of the noradrenaline carrier to the increase of extracellular dopamine in the rat prefrontal cortex by amphetamine and cocaine. Eur. J. Neurosci. 9, 2077-2085.PubMedGoogle Scholar
  219. Tanda, G.L., Carboni, E., Frau, R. and DiChiara, G. (1994) Increase of extracellular dopamine in the prefrontal cortex: portrait of drugs with antidepressant potential? Psychopharma-cology 115, 285-288.Google Scholar
  220. Tanila, H., Rama, P. and Carlson, S. (1996) The effects of prefrontal intracortical microinjec-tions of an alpha-2 agonist, alpha-2 antagonist and lidocaine on the delayed alternation performance of aged rats. Brain Res. Bull. 40, 117-119.Google Scholar
  221. Tejani-Butt, S.M., Pare, W.P. and Yang, J. (1994) Effect of repeated novel stressors on de-pressive behavior and brain norepinephrine receptor system in Sprague-Dawley and Wistar Kyoto (WKY) rats. Brain Res. 649, 27-35.PubMedGoogle Scholar
  222. Tillet, Y. and Kitahama, K. (1998) Distribution of central catecholaminergic neurons: a com-parison between ungulates, humans and other species. Histol. Histopathol. 13, 1163-1177.PubMedGoogle Scholar
  223. Ungerstedt, U. (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand. 367 [Suppl.], 1-48.Google Scholar
  224. Van Dengen, P. (1981) The central norepinephrine transmission and the locus coeruleus: a review of the data. Prog. Neurobiol. 16, 117-143.Google Scholar
  225. Venkatesan, C., Song, X.Z., Go, C.G., Kurose, H. and Aoki, C. (1996) Cellular and subcellu-lar distribution of a 2A -adrenergic receptors in the visual cortex of neonatal and adult rats. J. Comp. Neurol. 365, 79-95.PubMedGoogle Scholar
  226. Verhofstad, A.A., Hokfelt, T., Goldstein, M., Steinbusch, H.W. and Joosten, H.W. (1979) Appearance of tyrosine hydroxylase, aromatic amino-acid decarboxylase, dopamine beta-hydroxylase and phenylethanolamine N-methyltransferase during the ontogenesis of the adrenal medulla: an immunohistochemical study in the rat. Cell Tiss. Res. 200, 1-13.Google Scholar
  227. Vos, P., Kaufmann, D., Hand, P.J. and Wolfe, B.B. (1990) Beta 2-adrenergic receptors are colocalized and coregulated with “whisker barrels” in rat somatosensory cortex. Proc. Natl. Acad. Sci. 87, 5114-5118.PubMedGoogle Scholar
  228. Wamsley, J.K. (1984) Autoradiographic localization of cortical biogenic amine receptors. In: L. Descarries, T.A. Reader and H.H. Jasper (eds.), Monoamine Innervation of Cerebral Cortex. Liss, New York, pp. 153-174.Google Scholar
  229. Wamsley, J.K., Palacios, J.M., Young, W.S. and Kuhar, M.J. (1981) Autoradiographic deter-mination of neurotransmitter receptor distributions in the cerebral and cerebellar cortices. J. Histochem. Cytochem. 29, 125-135.PubMedGoogle Scholar
  230. Wang, M., Tang, Z.X. and Li, B.M. (2004) Enhanced visuomotor associative learning follow-ing stimulation of alpha 2A-adrenoceptors in the ventral prefrontal cortex in monkeys. Brain Res. 1024, 176-182.PubMedGoogle Scholar
  231. Wang, P., Kitayama, I. and Nomura, J. (1998) Tyrosine hydroxylase gene expression in the locus coeruleus of depression-model rats and rats exposed to short- and long-term forced walking stress. Life Sci. 62, 2083-8092.PubMedGoogle Scholar
  232. Watanabe, Y., McKittrick, C.R., Blanchard, D.C., Blanchard, R.J., McEwen, B.S. and Sakai, R.R. (1995) Effects of chronic social stress on tyrosine hydroxylase mRNA and protein levels. Molec. Brain Res. 32, 176-180.PubMedGoogle Scholar
  233. Waterhouse, B., Lin, C., Burne, R. and Woodward, D. (1983) The distribution of neocortical projection neurons in the locus coeruleus. J. Comp. Neurol. 217, 418-431.PubMedGoogle Scholar
  234. Waterhouse, B.D. and Woodward, D.J. (1980) Interaction of norepinephrine with cerebrocor-tical activity evoked by stimulation of somatosensory afferent pathways in the rat. Exp. Neurol. 67, 11-34.PubMedGoogle Scholar
  235. Waterhouse, B.D., Moises, H.C. and Woodward, D.J. (1980) Noradrenergic modulation of somatosensory cortical neuronal responses to iontophoretically applied putative neuro-transmitters. Exp. Neurol. 69, 30-49.PubMedGoogle Scholar
  236. Waterhouse, B.D., Moises, H.C. and Woodward, D.J. (1981) Alpha receptor mediated facilita-tion of somatosensory cortical neuronal responses to excitatory synaptic inputs and ionto-phoretically applied acetylcholine. Neuropharmacology 20, 907-920.PubMedGoogle Scholar
  237. Waterhouse, B.D., Moises, H.C. and Woodward, D.J. (1982) Norepinephrine enhancement of inhibitory synaptic mechanisms in cerebellum and cerebral cortex: mediation by beta adrenergic receptors. J. Pharm. Exp. Ther. 221, 495-506.Google Scholar
  238. Waterhouse, B.D., Moises, H.C. and Woodward, D.J. (1998) Phasic activation of the locus coeruleus enhances responses of primary sensory cortical neurons to peripheral receptive field stimulation. Brain Res. 790, 33-44.PubMedGoogle Scholar
  239. Waterhouse, B.D., Azizi, S.A., Burne, R.A. and Woodward, D.J. (1988) New evidence for a gating action of norepinephrine in central neuronal circuits of mammalian brain. Brain Res. Bull. 21, 425-432.Google Scholar
  240. Waterhouse, B.D., Azizi, S.A., Burne, R.A. and Woodward, D.J. (1990) Modulation of rat cortical area 17 neuronal responses to moving visual stimuli during norepinephrine and serotonin microiontophoresis. Brain Res. 514, 276-292.PubMedGoogle Scholar
  241. Weinshenker, D., White, S.S., Javors, M.A., Palmiter, R.D. and Szot, P. (2002) Regulation of the norepinephrine transporter abundance by catecholamines and desipramine in vivo. Brain Res. 946, 239-246.PubMedGoogle Scholar
  242. Yamamoto, B.K. and Novotney, S. (1998) Regulation of extracellular dopamine by the nore-pinephrine transporter. J. Neurochem. 71, 274-280.PubMedCrossRefGoogle Scholar
  243. Young, W.S. and Kuhar, M.J. (1980) Noradrenergic a1 and a2 receptors: light microscopic autoradiographic localization. Proc. Natl. Acad. Sci. 77, 1696-1700.PubMedGoogle Scholar
  244. Zametkin, A.J., Nordahl, T.E., Gross, M., King, A.C., Semple, W.E., Rumsey, J., Hamburger, S. and Cohen, R.M. (1990) Cerebral glucose metabolism in adults with hyperactivity of childhood onset. N. Engl. J. Med. 323, 1361-1366.PubMedCrossRefGoogle Scholar
  245. Zhu, M.-Y., Kim, C.-H., Hwang, D.-Y., Baldessarini, R. and Kim, K.-S. (2002) Effects of desipramine treatment on norepinephrine transporter gene expression in the cultured SK-N-BE(2)M17 cells and rat brain tissue. J. Neurochem. 82, 146-153.PubMedGoogle Scholar
  246. Zhu, M.-Y., Klimek, V., Dilley, G.E., Haycock, J.W., Stockmeier, C., Overholser, J.C., Melt-zer, H.Y. and Ordway, G.A. (1999) Elevated levels of tyrosine hydroxylase in the locus coeruleus in major depression. Biol. Psychiatry 46, 1275-1286.PubMedGoogle Scholar
  247. Zigmond, M.J., Finlay, J.M. and Sved, A.F. (1995) Neurochemical studies of central noradrenergic responses to acute and chronic stress. In: M.J. Friedman, D.S. Charney and A.Y. Deutsch (eds.), Neurobiological and Clinical Consequences of Stress: From Normal Adaptations to PTSD. Lippencott-Raven, Philadelphia, pp. 45-60.Google Scholar
  248. Zigmond, R.E., Schon, F. and Iversen, L.L. (1974) Increased tyrosine hydroxylase activity in the locus coeruleus of rat brain after reserpine treatment and cold stress. Brain Res. 70, 547-552.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Lee Ann H. Miner
    • 1
  • Susan R. Sesack
    • 1
  1. 1.Departments of Neuroscience and PsychiatryUniversity of PittsburghPittsburghUSA

Personalised recommendations