Prefrontal Cortical Circuits and Schizophrenia Pathophysiology

  • Patricio O'Donnell

Local Cortical Circuits as Functional Units

The prefrontal cortex (PFC) is a key brain region for a variety of high-order cognitive functions and catecholamines are critical for its proper functioning. The PFC sits at the highest end in the hierarchical organization of associative cortices, exerting control over broad sensorimotor processes. This cortical region presents a complex synaptic organization, arranged so as to provide a tight control of the firing of its primary neurons, the pyramidal cells. Spatial and temporal aspects contribute to this control, with discrete clusters of PFC units perhaps encoding specific aspects of cognitive outcome.


Pyramidal Neuron Ventral Tegmental Area Biol Psychiatry Isolation Rear Ventral Tegmental Area Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akbarian S, Sucher NJ, Bradley D, Tafazzoli A, Trinh D, Hetrick WP, Potkin SG, Sandman CA, Bunney Jr. WE, Jones EG (1996) Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci 16:19-30.PubMedGoogle Scholar
  2. Al-Amin HA, Shannon Weickert C, Weinberger DR, Lipska BK (2001) Delayed onset of enhanced MK-801-induced motor hyperactivity after neonatal lesions of the rat ventral hippocampus. Biol Psychiatry 49:528-539.PubMedGoogle Scholar
  3. Andersen SL, LeBlanc CJ, Lyss PJ (2001) Maturational increases in c-fos expression in the ascending dopamine systems. Synapse 41:345-350.PubMedGoogle Scholar
  4. Anderson SA, Classey JD, Conde F, Lund JS, Lewis DA (1995) Synchronous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex. Neuroscience 67:7-22.PubMedGoogle Scholar
  5. Ashe PC, Chlan-Fourney J, Juorio AV, Li XM (2002) Brain-derived neurotrophic factor (BDNF) mRNA in rats with neonatal ibotenic acid lesions of the ventral hippocampus. Brain Res 956:126-135.PubMedGoogle Scholar
  6. Bachevalier J, Alvarado MC, Malkova L (1999) Memory and socioemotional behavior in monkeys after hippocampal damage incurred in infancy or in adulthood. Biol Psychiatry 46:329-339.PubMedGoogle Scholar
  7. Bakshi VP, Swerdlow NR, Braff DL, Geyer MA (1998) Reversal of isolation rearing-induced deficits in prepulse inhibition by Seroquel and olanzapine. Biol Psychiatry 43:436-445.PubMedGoogle Scholar
  8. Benes FM (1997) The role of stress and dopamine-GABA interactions in the vulnerability for schizophrenia. J Psychiatr Res 31:257-275.PubMedGoogle Scholar
  9. Bernardi G, Cherubini E, Marciani MG, Mercuri N, Stanzione P (1982) Responses of intracel-lularly recorded cortical neurons to the iontophoretic application of dopamine. Brain Res 245:268-274.Google Scholar
  10. Brake WG, Sullivan RM, Flores G, Srivastava L, Gratton A (1999) Neonatal ventral hippo-campal lesions attenuate the nucleus accumbens dopamine response to stress: an electro-chemical study in the adult rat. Brain Res 831:25-32.PubMedGoogle Scholar
  11. Buhl DL, Harris KD, Hormuzdi SG, Monyer H, Buzsaki G (2003) Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. J Neurosci 23:1013-1018.PubMedGoogle Scholar
  12. Buller AL, Larson HC, Schneider BE, Beaton JA, Morrisett RA, Monaghan DT (1994) The molecular basis of NMDA receptor subtypes: native receptor diversity is predicted by sub-unit composition. J Neurosci 14:5471-5484.PubMedGoogle Scholar
  13. Cannon TD, van Erp TG, Bearden CE, Loewy R, Thompson P, Toga AW, Huttunen MO, Keshavan MS, Seidman LJ, Tsuang MT (2003) Early and late neurodevelopmental influ-ences in the prodrome to schizophrenia: contributions of genes, environment, and their interactions. Schizophr Bull 29:653-669.PubMedGoogle Scholar
  14. Carmichael ST, Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615-641.PubMedGoogle Scholar
  15. Casey BJ, Giedd JN, Thomas KM (2000) Structural and functional brain development and its relation to cognitive development. Biol Psychol 54:241-257.PubMedGoogle Scholar
  16. Chambers RA, Self DW (2002) Motivational responses to natural and drug rewards in rats with neonatal ventral hippocampal lesions: an animal model of dual diagnosis schizophre-nia. Neuropsychopharmacology 27:889-905.PubMedGoogle Scholar
  17. Chambers RA, Moore J, McEvoy JP, Levin ED (1996) Cognitive effects of neonatal hippo-campal lesions in a rat model of schizophrenia. Neuropsychopharmacology 15:587-594.PubMedGoogle Scholar
  18. Coyle JT (2004) The GABA-glutamate connection in schizophrenia: which is the proximate cause? Biochem Pharmacol 68:1507-1514.PubMedGoogle Scholar
  19. Coyle JT, Tsai G (2004) The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacol-ogy (Berl) 174:32-38.Google Scholar
  20. Cunningham MG, Bhattacharyya S, Benes FM (2002) Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence. J Comp Neurol 453:116-130.PubMedGoogle Scholar
  21. de Lima AD, Opitz T, Voigt T (2004) Irreversible loss of a subpopulation of cortical interneu-rons in the absence of glutamatergic network activity. Eur J Neurosci 19:2931-2943.PubMedGoogle Scholar
  22. Dunah AW, Yasuda RP, Wang YH, Luo J, Davila-Garcia M, Gbadegesin M, Vicini S, Wolfe BB (1996) Regional and ontogenic expression of the NMDA receptor subunit NR2D pro-tein in rat brain using a subunit-specific antibody. J Neurochem 67:2335-2345.PubMedGoogle Scholar
  23. Featherstone RE, Rizos Z, Nobrega JN, Kapur S, Fletcher PJ (2007) Gestational methyla-zoxymethanol acetate treatment impairs select cognitive functions: parallels to schizophre-nia. Neuropsychopharmacology 32:483-492.PubMedGoogle Scholar
  24. Flagstad P, Mork A, Glenthoj BY, van Beek J, Michael-Titus AT, Didriksen M (2004) Disrup-tion of neurogenesis on gestational day 17 in the rat causes behavioral changes relevant to positive and negative schizophrenia symptoms and alters amphetamine-induced dopamine release in nucleus accumbens. Neuropsychopharmacology 29:2052-2064.PubMedGoogle Scholar
  25. Flores G, Alquicer G, Silva-Gomez AB, Zaldivar G, Stewart J, Quirion R, Srivastava LK (2005) Alterations in dendritic morphology of prefrontal cortical and nucleus accumbens neurons in post-pubertal rats after neonatal excitotoxic lesions of the ventral hippocampus. Neuroscience 133:463-470.PubMedGoogle Scholar
  26. Fujii N, Graybiel AM (2005) Time-varying covariance of neural activities recorded in striatum and frontal cortex as monkeys perform sequential-saccade tasks. Proc Natl Acad Sci U S A 102:9032-9037.PubMedGoogle Scholar
  27. Fuster JM (1997) The Prefrontal Cortex. Anatomy, Physiology, and Neuropsychology of the Frontal Lobe. New York: Lippincott-Raven.Google Scholar
  28. Galarreta M, Erdelyi F, Szabo G, Hestrin S (2004) Electrical coupling among irregular-spiking GABAergic interneurons expressing cannabinoid receptors. J Neurosci 24:9770-9778.PubMedGoogle Scholar
  29. Gao WJ, Goldman-Rakic PS (2003) Selective modulation of excitatory and inhibitory micro-circuits by dopamine. Proc Natl Acad Sci U S A 100:2836-2841.PubMedGoogle Scholar
  30. Gao WJ, Krimer LS, Goldman-Rakic PS (2001) Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. Proc Natl Acad Sci U S A 98:295-300.PubMedGoogle Scholar
  31. Geyer MA, Wilkinson LS, Humby T, Robbins TW (1993) Isolation rearing of rats produces a deficit in prepulse inhibition of acoustic startle similar to that in schizophrenia. Biol Psychiatry 34:361-372.PubMedGoogle Scholar
  32. Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402:75-79.PubMedGoogle Scholar
  33. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, A.C. E, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861-863.PubMedGoogle Scholar
  34. Gonzalez-Burgos G, Hashimoto T, Lewis DA (2007) Inhibition and timing in cortical neural circuits. Am J Psychiatry 164:12.PubMedGoogle Scholar
  35. Gorba T, Wahle P (1999) Expression of TrkB and TrkC but not BDNF mRNA in neurochemi-cally identified interneurons in rat visual cortex in vivo and in organotypic cultures. Eur J Neurosci 11:1179-1190.PubMedGoogle Scholar
  36. Gorelova NA, Yang CR (2000) Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro. J Neurophysiol 84:75-87.PubMedGoogle Scholar
  37. Gorelova N, Seamans JK, Yang CR (2002) Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. J Neurophysiol 88:3150-3166.PubMedGoogle Scholar
  38. Goto Y, O’Donnell P (2002) Delayed mesolimbic system alteration in a developmental animal model of schizophrenia. J Neurosci 22:9070-9077.PubMedGoogle Scholar
  39. Goto Y, O’Donnell P (2004) Prefrontal lesion reverses abnormal mesoaccumbens response in an animal model of schizophrenia. Biol Psychiatry 55:172-176.PubMedGoogle Scholar
  40. Gourevitch R, Rocher C, Pen GL, Krebs MO, Jay TM (2004) Working memory deficits in adult rats after prenatal disruption of neurogenesis. Behav Pharmacol 15:287-292.PubMedGoogle Scholar
  41. Groenewegen HJ, Berendse HW, Wolters JG, Lohman AHM (1990) The anatomical relation-ship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog Brain Res 85:95-118.PubMedGoogle Scholar
  42. Gulledge AT, Jaffe DB (1998) Dopamine decreases the excitability of layer V pyramidal cells in the rat prefrontal cortex. J Neurosci 18:9139-9151.PubMedGoogle Scholar
  43. Gurden H, Tassin J-P, Jay T (1999) Integrity of the mesocortical dopaminergic system is necessary for complete expression of in vivo hippocampal-prefrontal cortex long-term potentiation. Neuroscience 94:1019-1027.PubMedGoogle Scholar
  44. Hashimoto T, Bergen SE, Nguyen QL, Xu B, Monteggia LM, Pierri JN, Sun Z, Sampson AR, Lewis DA (2005) Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia. J Neurosci 25:372-383.PubMedGoogle Scholar
  45. Henze DA, Gonzalez-Burgos GR, Urban NN, Lewis DA, Barrionuevo G (2000) Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex. J Neurophysiol 84:2799-2809.PubMedGoogle Scholar
  46. Ishikawa A, Nakamura S (2003) Convergence and interaction of hippocampal and amygdalar projections within the prefrontal cortex in the rat. J Neurosci 23:9987-9995.PubMedGoogle Scholar
  47. Jackson ME, Homayoun H, Moghaddam B (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci U S A 101:8467-8472.PubMedGoogle Scholar
  48. Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301-1308.PubMedGoogle Scholar
  49. Jay TM, Glowinski J, Thierry AM (1995) Inhibition of hippocampo-prefrontal cortex excita-tory responses by the mesocortical DA system. Neuroreport 6:1845-1848.PubMedGoogle Scholar
  50. Jones GH, Marsden CA, Robbins TW (1991) Behavioural rigidity and rule-learning deficits following isolation-rearing in the rat: neurochemical correlates. Behav Brain Res 43:35-50.PubMedGoogle Scholar
  51. Jovanovic JN, Thomas P, Kittler JT, Smart TG, Moss SJ (2004) Brain-derived neurotrophic factor modulates fast synaptic inhibition by regulating GABA(A) receptor phosphorylation, activity, and cell-surface stability. J Neurosci 24:522-530.PubMedGoogle Scholar
  52. Kato K, Shishido T, Ono M, Shishido K, Kobayashi M, Suzuki H, Nabeshima T, Furukawa H, Niwa S (2000) Effects of phencyclidine on behavior and extracellular levels of dopamine and its metabolites in neonatal ventral hippocampal damaged rats. Psychopharmacology (Berl) 150:163-169.Google Scholar
  53. Kawaguchi Y (2001) Distinct firing patterns of neuronal subtypes in cortical synchronized activities. J Neurosci 21:7261-7272.PubMedGoogle Scholar
  54. Kuner T, Schoepfer R (1996) Multiple structural elements determine subunit specificity of Mg2+ block in NMDA receptor channels. J Neurosci 16:3549-3558.PubMedGoogle Scholar
  55. Lavin A, Moore HM, Grace AA (2005) Prenatal disruption of neocortical development alters prefrontal cortical neuron responses to dopamine in adult rats. Neuropsychopharmacology 30:1426-1435.PubMedGoogle Scholar
  56. Le Pen G, Moreau JL (2002) Disruption of prepulse inhibition of startle reflex in a neurode-velopmental model of schizophrenia: reversal by clozapine, olanzapine and risperidone but not by haloperidol. Neuropsychopharmacology 27:1-11.PubMedGoogle Scholar
  57. Le Pen G, Gourevitch R, Hazane F, Hoareau C, Jay TM, Krebs MO (2006) Peri-pubertal maturation after developmental disturbance: a model for psychosis onset in the rat. Neuro-science 143:395-405.Google Scholar
  58. Lewis BL, O’Donnell P (2000) Ventral tegmental area afferents to the prefrontal cortex main-tain membrane potential ‘up’ states in pyramidal neurons via D1 dopamine receptors. Cereb Cortex 10:1168-1175.PubMedGoogle Scholar
  59. Lewis DA (1997) Development of the prefrontal cortex during adolescence. Neuropsycho-pharmacology 16:385-398.Google Scholar
  60. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312-324.PubMedGoogle Scholar
  61. Lipska B, al-Amin H, Weinberger D (1998) Excitotoxic lesions of the rat medial prefrontal cortex. Effects on abnormal behaviors associated with neonatal hippocampal damage. Neu-ropsychopharmacology 19:451-464.Google Scholar
  62. Lipska BK, Weinberger DR (1994) Subchronic treatment with haloperidol and clozapine in rats with neonatal excitotoxic hippocampal damage. Neuropsychopharmacology 10:199-205.PubMedGoogle Scholar
  63. Lipska BK, Jaskiw GE, Weinberger DR (1993) Postpuberal emergence of hyperresponsive-ness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a poten-tial animal model of schizophrenia. Neuropsychopharmacology 90:67-75.Google Scholar
  64. Lipska BK, Aultman JM, Verma A, Weinberger DR, Moghaddam B (2002) Neonatal damage of the ventral hippocampus impairs working memory in the rat. Neuropsychopharmaco-logy 27:47-54.Google Scholar
  65. Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR (1995) Neonatal excitotoxic hippocampal damage in rats cause post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology (Berl) 132:303-310.Google Scholar
  66. Lipska BK, Lerman DN, Khaing ZZ, Weickert CS, Weinberger DR (2003) Gene expression in dopamine and GABA systems in an animal model of schizophrenia: effects of antipsy-chotic drugs. Eur J Neurosci 18:391-402.PubMedGoogle Scholar
  67. Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelly R (1959) Study of a new schizo-phrenomimetic drug - Sernyl. Arch Neurol Psychiatry 81:363-369.Google Scholar
  68. Makino C, Shibata H, Ninomiya H, Tashiro N, Fukumaki Y (2005) Identification of single-nucleotide polymorphisms in the human N-methyl-D-aspartate receptor subunit NR2D gene, GRIN2D, and association study with schizophrenia. Psychiatr Genet 15:215-221.PubMedGoogle Scholar
  69. Mercuri N, Calabresi P, Stanzione P, Bernardi G (1985) Electrical stimulation of mesen-cephalic cell groups (A9-A10) produces monosynaptic excitatory potentials in rat frontal cortex. Brain Res 338:192-195.PubMedGoogle Scholar
  70. Mitchell CP, Grayson DR, Goldman MB (2005) Neonatal lesions of the ventral hippocampal formation alter GABA-A receptor subunit mRNA expression in adult rat frontal pole. Biol Psychiatry 57:49-55.PubMedGoogle Scholar
  71. Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotrans-mission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopa-minergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921-2927.PubMedGoogle Scholar
  72. Moghaddam B, Aultman J, Weinberger D, Lipska B (1999) Neonatal damage of the rat ventral hippocampus impairs acquisition of a working memory task. Soc Neurosci Abstr 25:1891.Google Scholar
  73. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529-540.PubMedGoogle Scholar
  74. O’Donnell P (2003) Dopamine gating of forebrain neural ensembles. Eur J Neurosci 17:429-435.PubMedGoogle Scholar
  75. O’Donnell P, Lewis BL, Weinberger DR, Lipska BK (2002) Neonatal hippocampal damage alters electrophysiological properties of prefrontal cortical neurons in adult rats. Cereb Cortex 12:975-982.PubMedGoogle Scholar
  76. Pantelis C, Yucel M, Wood SJ, Velakoulis D, Sun D, Berger G, Stuart GW, Yung A, Phillips L, McGorry PD (2005) Structural brain imaging evidence for multiple pathological pro-cesses at different stages of brain development in schizophrenia. Schizophr Bull 31:672-696.PubMedGoogle Scholar
  77. Paulus MP, Bakshi V, Geyer MA (1998) Isolation rearing affects sequential organization of motor behavior in post-pubertal but not pre-pubertal Lister and Sprague-Dawley rats. Behav Brain Res 94:271-280.PubMedGoogle Scholar
  78. Penit-Soria J, Audinat E, Crepel F (1987) Excitation of prefrontal cortical neurons by dopa-mine: an in vitro electrophysiological study. Brain Res 425:263-274.PubMedGoogle Scholar
  79. Peters YM, O’Donnell P (2005) Social isolation rearing affects prefrontal cortical response to ventral tegmental area stimulation. Biol Psychiatry 57:1205-1208.PubMedGoogle Scholar
  80. Rosenbaum G, Cohen BD, Luby JS, Gottlieb JS, Yelen D (1959) Comparison of sernyl with other drugs: stimulation of schizophrenic performance with sernyl, LSD-25, and amobarbi-tal (amytal) sodium; I. Attention, motor function, and proprioception. Arch Gen Psychiatry 1:113-118.Google Scholar
  81. Rosenberg DR, Lewis DA (1994) Changes in the dopaminergic innervation of monkey pre-frontal cortex during late postnatal development: a tyrosine hydroxylase immunohisto-chemical study. Biol Psychiatry 36:272-277.PubMedGoogle Scholar
  82. Rosenberg DR, Lewis DA (1995) Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: a tyrosine hydroxylase immunohistochemical analy-sis. J Comp Neurol 358:383-400.PubMedGoogle Scholar
  83. Sams-Dodd F (1998) A test of the predictive validity of animal models of schizophrenia based on phencyclidine and D-amphetamine. Neuropsychopharmacology 18:293-304.PubMedGoogle Scholar
  84. Sams-Dodd F, Lipska BK, Weinberger DR (1997) Neonatal lesions of the rat ventral hippo-campus result in hyperlocomotion and deficits in social behavior in adulthood. Psycho-pharmacology (Berl) 132:303-310.Google Scholar
  85. Scherzer CR, Landwehrmeyer GB, Kerner JA, Counihan TJ, Kosinski CM, Standaert DG, Daggett LP, Velicelebi G, Penney JB, Young AB (1998) Expression of N-methyl-D-aspartate receptor subunit mRNAs in the human brain: hippocampus and cortex. J Comp Neurol 390:75-90.PubMedGoogle Scholar
  86. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1-27.PubMedGoogle Scholar
  87. Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modula-tion in the prefrontal cortex. Prog Neurobiol 74:1-58.PubMedGoogle Scholar
  88. Segalowitz SJ, Davies PL (2004) Charting the maturation of the frontal lobe: an electrophysio-logical strategy. Brain Cogn 55:116-133.PubMedGoogle Scholar
  89. Standaert DG, Landwehrmeyer GB, Kerner JA, Penney Jr. JB, Young AB (1996) Expression of NMDAR2D glutamate receptor subunit mRNA in neurochemically identified interneu-rons in the rat neostriatum, neocortex and hippocampus. Mol Brain Res 42:89-102.PubMedGoogle Scholar
  90. Steffensen SC, Svingos AL, Pickel VM, Henriksen SJ (1998) Electrophysiological characteri-zation of GABAergic neurons in the ventral tegmental area. J Neurosci 18:8003-8015.PubMedGoogle Scholar
  91. Swerdlow NR, Lipska BK, Weinberger DR, Braff DL, Jaskiw GE, Geyer MA (1995) Increased sensitivity to the sensorimotor gating-disruptive effects of apomorphine after lesions of medial prefrontal cortex of ventral hippocampus in adult rats. Psychopharmacology (Berl) 122:27-34.Google Scholar
  92. Thierry AM, Blanc M, Sobel A, Stinus L, Glowinski J (1973) Dopaminergic terminals in the rat cortex. Science 182:499-500.PubMedGoogle Scholar
  93. Tseng KY, O’Donnell P (2004) Dopamine-glutamate interactions controlling prefrontal corti-cal pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 24:5131-5139.PubMedGoogle Scholar
  94. Tseng KY, O’Donnell P (2005) Post-pubertal emergence of prefrontal cortical up states induced by D1-NMDA co-activation. Cereb Cortex 15:49-57.PubMedGoogle Scholar
  95. Tseng KY, O’Donnell P (2007) Dopamine modulation of prefrontal cortical interneurons changes during adolescence. Cereb Cortex 17:1235-1240.PubMedGoogle Scholar
  96. Vollenweider FX, Leenders KL, Scharfetter C, Antonini A, Maguire P, Missimer J, Angst J (1997) Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur Neuropsy-chopharmacol 7:9-24.Google Scholar
  97. Waelti P, Dickinson A, Schultz W (2001) Dopamine responses comply with basic assumptions of formal learning theory. Nature 412:43-48.PubMedGoogle Scholar
  98. Wang J, O’Donnell P (2001) D1 dopamine receptors potentiate NMDA-mediated excitability increase in rat prefrontal cortical pyramidal neurons. Cereb Cortex 11:452-462.PubMedGoogle Scholar
  99. Wenzel A, Villa M, Mohler H, Benke D (1996) Developmental and regional expression of NMDA receptor subtypes containing the NR2D subunit in rat brain. J Neurochem 66: 1240-1248.PubMedCrossRefGoogle Scholar
  100. Williams K (1995) Pharmacological properties of recombinant N-methyl-D-aspartate (NMDA) receptors containing the epsilon 4 (NR2D) subunit. Neurosci Lett 184:181-184.PubMedGoogle Scholar
  101. Woo TU, Pucak ML, Kye CH, Matus CV, Lewis DA (1997) Peripubertal refinement of the intrinsic and associational circuitry in monkey prefrontal cortex. Neuroscience 80:1149-1158.PubMedGoogle Scholar
  102. Yamaguchi T, Sheen W, Morales M (2007) Glutamatergic neurons are present in the rat ventral tegmental area. Eur J Neurosci 25:106-118.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Patricio O'Donnell
    • 1
  1. 1.Department of Anatomy and Neurobiology and Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations