Advertisement

Interplay Between Dopamine and Acetylcholine in the Modulation of Attention

  • Marco Atzori
  • Rodrigo D. Paz

Attention involves several functions such as alertness, shift, stabilization, and distractor suppression. Alertness is a global mental state characterized by increased motivation and lowered thresholds for encoding new information. Attention shift allows either transiting from a passive inattentive to an active focused state, or refocusing perceptual resources from a previously targeted perceptual object to a more salient one. During attention stabilization perceptual resources are kept concentrated onto a particular target in a manner that the neural activity evoked by selected stimuli is momentarily enhanced. Suppression is an active process by which neural activity evoked by task irrelevant stimuli is diminished. These functions are impaired in several neuropsychiatric conditions. We review clinical and neurophysiological data in humans and laboratory animals suggesting that acetylcholine and dopamine interact in the neocortex to produce purposeful attention.

It is proposed that a more satisfactory theory of attention needs to integrate both tonic and phasic effects produced by acetylcholine and dopamine. In the model here proposed, nicotinic receptors are thought to play a pivotal role in the enhancement of neural activity evoked by task relevant stimuli. Muscarinic receptors are proposed to be involved in alertness, and dopaminergic receptors in the temporary representation of intermediate goals. A combination of signals triggered by muscarinic and dopaminergic receptor coactivation may facilitate the suppression of neural activity evoked by task irrelevant stimuli. A better understanding of the interplay between dopamine and acetylcholine in attention modulation may help to develop better psychopharmacological interventions for neuropsychiatric conditions in which attention is impaired.

Keywords

Obsessive Compulsive Disorder Ventral Tegmental Area Nicotinic Receptor Basal Forebrain Obsessive Compulsive Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkondon, M. and Albuquerque, E.X. (2004) The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res. 145, 109-120.CrossRefPubMedGoogle Scholar
  2. Arnold, H.M., Burk, J.A., Hodgson, E.M., Sarter, M., and Bruno, J.P. (2002) Differential cortical acetylcholine release in rats performing a sustained attention task versus behavioral control tasks that do not explicitly tax attention. Neuroscience. 114, 451-460.CrossRefPubMedGoogle Scholar
  3. Arroyo, G., Aldea, M., Fuentealba, J., and Garcia, A.G. (2002) [Nicotinic Receptor, galan-tamine and Alzheimer disease]. Rev Neurol. 34, 1057-1065.PubMedGoogle Scholar
  4. Atzori, M., Kanold, P.O., Pineda, J.C., Flores-Hernandez, J., and Paz, R.D. (2005) Dopamine prevents muscarinic-induced decrease of glutamate release in the auditory cortex. Neuro-science. 134, 1153-1165.Google Scholar
  5. Behl, P., Bocti, C., Swartz, R.H., Gao, F., Sahlas, D.J., Lanctot, K.L., Streiner, D.L., and Black, S.E. (2007) Strategic subcortical hyperintensities in cholinergic pathways and ex-ecutive function decline in treated Alzheimer patients. Arch Neurol. 64, 266-272.CrossRefPubMedGoogle Scholar
  6. Blatt, G.J., Fitzgerald, C.M., Guptill, J.T., Booker, A.B., Kemper, T.L., and Bauman, M.L. (2001) Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord. 31, 537-543.CrossRefPubMedGoogle Scholar
  7. Brunel, N. and Wang, X.J. (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci. 11, 63-85.CrossRefPubMedGoogle Scholar
  8. Bubser, M. and Koch, M. (1994) Prepulse inhibition of the acoustic startle response of rats is reduced by 6-hydroxydopamine lesions of the medial prefrontal cortex. Psychopharmacology (Berl). 113, 487-492.CrossRefGoogle Scholar
  9. Buhl, E.H., Tamas, G., and Fisahn, A. (1998) Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J Physiol. 513 ( Pt 1), 117-126.CrossRefPubMedGoogle Scholar
  10. Carlsson, M.L. (2001) On the role of prefrontal cortex glutamate for the antithetical phenome-nology of obsessive compulsive disorder and attention deficit hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry. 25, 5-26.CrossRefPubMedGoogle Scholar
  11. Constantinidis, C., Franowicz, M.N., and Goldman-Rakic, P.S. (2001) The sensory nature of mnemonic representation in the primate prefrontal cortex. Nat Neurosci. 4, 311-316.CrossRefPubMedGoogle Scholar
  12. Cox, C.L., Metherate, R., and Ashe, J.H. (1994) Modulation of cellular excitability in neocor-tex: muscarinic receptor and second messenger-mediated actions of acetylcholine. Syn-apse. 16, 123-136.CrossRefGoogle Scholar
  13. Crowell, T.A., Luis, C.A., Cox, D.E., and Mullan, M. (2007) Neuropsychological comparison of Alzheimer’s disease and dementia with lewy bodies. Dement Geriatr Cogn Disord. 23, 120-125.CrossRefPubMedGoogle Scholar
  14. Cruikshank, S.J. and Weinberger, N.M. (2001) In vivo Hebbian and basal forebrain stimula-tion treatment in morphologically identified auditory cortical cells. Brain Res. 891, 78-93.CrossRefPubMedGoogle Scholar
  15. Day, J.C., Tham, C.S., and Fibiger, H.C. (1994) Dopamine depletion attenuates amphetamine-induced increases of cortical acetylcholine release. Eur J Pharmacol. 263, 285-292.CrossRefPubMedGoogle Scholar
  16. de Lanerolle, N.C. and Millam, J.R. (1980) Dopamine, chick behavior, and states of attention. J Comp Physiol Psychol. 94, 346-352.CrossRefPubMedGoogle Scholar
  17. Di Chiara, G. (1999) Drug addiction as dopamine-dependent associative learning disorder. Eur J Pharmacol. 375, 13-30.CrossRefPubMedGoogle Scholar
  18. Dollfus, S., Petit, M., Menard, J.F., and Lesieur, P. (1992) Amisulpride versus bromocriptine in infantile autism: a controlled crossover comparative study of two drugs with opposite effects on dopaminergic function. J Autism Dev Disord. 22, 47-60.CrossRefPubMedGoogle Scholar
  19. Durstewitz, D. and Seamans, J.K. (2002) The computational role of dopamine D1 receptors in working memory. Neural Netw. 15, 561-572.CrossRefPubMedGoogle Scholar
  20. Durstewitz, D., Kelc, M., and Gunturkun, O. (1999) A neurocomputational theory of the dopaminergic modulation of working memory functions. J Neurosci. 19, 2807-2822.PubMedGoogle Scholar
  21. Eilam, D., Zor, R., Szechtman, H., and Hermesh, H. (2006) Rituals, stereotypy and compul-sive behavior in animals and humans. Neurosci Biobehav Rev. 30, 456-471.CrossRefPubMedGoogle Scholar
  22. Ewert, J.P., Buxbaum-Conradi, H., Glagow, M., Rottgen, A., Schurg-Pfeiffer, E., and Schwippert, W.W. (1999) Forebrain and midbrain structures involved in prey-catching behaviour of toads: stimulus-response mediating circuits and their modulating loops. Eur J Morphol. 37, 172-176.CrossRefPubMedGoogle Scholar
  23. Ewert, J.P., Buxbaum-Conradi, H., Dreisvogt, F., Glagow, M., Merkel-Harff, C., Rottgen, A., Schurg-Pfeiffer, E., and Schwippert, W.W. (2001) Neural modulation of visuomotor func-tions underlying prey-catching behaviour in anurans: perception, attention, motor per-formance, learning. Comp Biochem Physiol A Mol Integr Physiol. 128, 417-461.CrossRefPubMedGoogle Scholar
  24. Ferrari-Dileo, G., Waelbroeck, M., Mash, D.C., and Flynn, D.D. (1994) Selective labeling and localization of the M4 (m4) muscarinic receptor subtype. Mol Pharmacol. 46, 1028-1035.PubMedGoogle Scholar
  25. Foldi, N.S., White, R.E., and Schaefer, L.A. (2005) Detecting effects of donepezil on visual selective attention using signal detection parameters in Alzheimer’s disease. Int J Geriatr Psychiatry. 20, 485-488.CrossRefPubMedGoogle Scholar
  26. Foster, D.J. and Wilson, M.A. (2006) Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature. 440, 680-683.CrossRefPubMedGoogle Scholar
  27. Fuster, J.M. (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol. 36, 61-78.PubMedGoogle Scholar
  28. Gao, W.J., Krimer, L.S., and Goldman-Rakic, P.S. (2001) Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. Proc Natl Acad Sci USA. 98, 295-300.CrossRefPubMedGoogle Scholar
  29. Giniatullin, R., Nistri, A., and Yakel, J.L. (2005) Desensitization of nicotinic ACh receptors: shaping cholinergic signaling. Trends Neurosci. 28, 371-378.CrossRefPubMedGoogle Scholar
  30. Goforth, H.W. and Rao, M.S. (2003) Improvement in behaviour and attention in an autistic patient treated with ziprasidone. Aust N Z J Psychiatry. 37, 775-776.CrossRefPubMedGoogle Scholar
  31. Grace, A.A. (1991) Phasic versus tonic dopamine release and the modulation of dopamine sys-tem responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience. 41, 1-24.CrossRefPubMedGoogle Scholar
  32. Green, M.F., Nuechterlein, K.H., Gold, J.M., Barch, D.M., Cohen, J., Essock, S., Fenton, W.S., Frese, F., Goldberg, T.E., Heaton, R.K., Keefe, R.S., Kern, R.S., Kraemer, H., Stover, E., Weinberger, D.R., Zalcman, S., and Marder, S.R. (2004) Approaching a con-sensus cognitive battery for clinical trials in schizophrenia: the NIMH-MATRICS confer-ence to select cognitive domains and test criteria. Biol Psychiatry. 56, 301-307.CrossRefPubMedGoogle Scholar
  33. Higashima, M., Nagasawa, T., Oka, T., Tsukada, T., Okamoto, T., Komai, Y., Kawasaki, Y., and Koshino, Y. (2005) Neuropsychological correlates of an attention-related negative component elicited in an auditory oddball paradigm in schizophrenia. Neuropsychobiol-ogy. 51, 177-182.CrossRefGoogle Scholar
  34. Ishii, M. and Kurachi, Y. (2006) Muscarinic acetylcholine receptors. Curr Pharm Des. 12, 3573-3581.CrossRefPubMedGoogle Scholar
  35. Johnson, B.A., Roache, J.D., Ait-Daoud, N., Wallace, C., Wells, L.T., and Wang, Y. (2005) Effects of isradipine on methamphetamine-induced changes in attentional and perceptual-motor skills of cognition. Psychopharmacology (Berl). 178, 296-302.CrossRefGoogle Scholar
  36. Kimura, F. (2000) Cholinergic modulation of cortical function: a hypothetical role in shifting the dynamics in cortical network. Neurosci Res. 38, 19-26.CrossRefPubMedGoogle Scholar
  37. Koch, M. and Bubser, M. (1994) Deficient sensorimotor gating after 6-hydroxydopamine lesion of the rat medial prefrontal cortex is reversed by haloperidol. Eur J Neurosci. 6, 1837-1845.CrossRefPubMedGoogle Scholar
  38. Kozak, R., Bruno, J.P., and Sarter, M. (2006) Augmented prefrontal acetylcholine release during challenged attentional performance. Cereb Cortex. 16, 9-17.CrossRefPubMedGoogle Scholar
  39. Krnjevic, K. (1993) Central cholinergic mechanisms and function. Prog Brain Res. 98, 285-292.CrossRefPubMedGoogle Scholar
  40. Lavine, N., Reuben, M., and Clarke, P.B. (1997) A population of nicotinic receptors is associ-ated with thalamocortical afferents in the adult rat: laminal and areal analysis. J Comp Neurol. 380, 175-190.CrossRefPubMedGoogle Scholar
  41. Lisman, J.E. and Grace, A.A. (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron. 46, 703-713.CrossRefPubMedGoogle Scholar
  42. Martin-Ruiz, C.M., Lee, M., Perry, R.H., Baumann, M., Court, J.A., and Perry, E.K. (2004) Molecular analysis of nicotinic receptor expression in autism. Brain Res Mol Brain Res. 123, 81-90.CrossRefPubMedGoogle Scholar
  43. Mash, D.C. and Potter, L.T. (1986) Autoradiographic localization of M1 and M2 muscarine receptors in the rat brain. Neuroscience. 19, 551-564.CrossRefPubMedGoogle Scholar
  44. McGaughy, J., Dalley, J.W., Morrison, C.H., Everitt, B.J., and Robbins, T.W. (2002) Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infu-sions of 192 IgG-saporin on attentional performance in a five-choice serial reaction time task. J Neurosci. 22, 1905-1913.PubMedGoogle Scholar
  45. McKeith, I.G., Dickson, D.W., Lowe, J., Emre, M., O’Brien, J.T., Feldman, H., Cummings, J., Duda, J.E., Lippa, C., Perry, E.K., Aarsland, D., Arai, H., Ballard, C.G., Boeve, B., Burn, D.J., Costa, D., Del Ser, T., Dubois, B., Galasko, D., Gauthier, S., Goetz, C.G., Gomez-Tortosa, E., Halliday, G., Hansen, L.A., Hardy, J., Iwatsubo, T., Kalaria, R.N., Kaufer, D., Kenny, R.A., Korczyn, A., Kosaka, K., Lee, V.M., Lees, A., Litvan, I., Londos, E., Lopez, O.L., Minoshima, S., Mizuno, Y., Molina, J.A., Mukaetova-Ladinska, E.B., Pasquier, F., Perry, R.H., Schulz, J.B., Trojanowski, J.Q., and Yamada, M. (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 65, 1863-1872.CrossRefPubMedGoogle Scholar
  46. Mesulam, M. (2004) The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn Mem. 11, 43-49.CrossRefPubMedGoogle Scholar
  47. Metherate, R. and Ashe, J.H. (1991) Basal forebrain stimulation modifies auditory cortex responsiveness by an action at muscarinic receptors. Brain Res. 559, 163-167.CrossRefPubMedGoogle Scholar
  48. Metherate, R. and Hsieh, C.Y. (2003) Regulation of glutamate synapses by nicotinic acetyl-choline receptors in auditory cortex. Neurobiol Learn Mem. 80, 285-290.CrossRefPubMedGoogle Scholar
  49. Metherate, R. and Weinberger, N.M. (1989) Acetylcholine produces stimulus-specific recep-tive field alterations in cat auditory cortex. Brain Res. 480, 372-377.CrossRefPubMedGoogle Scholar
  50. Nelson, C.L., Sarter, M., and Bruno, J.P. (2000) Repeated pretreatment with amphetamine sensi-tizes increases in cortical acetylcholine release. Psychopharmacology (Berl). 151, 406-415.CrossRefGoogle Scholar
  51. Noisin, E.L. and Thomas, W.E. (1988) Ontogeny of dopaminergic function in the rat midbrain tegmentum, corpus striatum and frontal cortex. Brain Res. 469, 241-252.PubMedGoogle Scholar
  52. Passetti, F., Dalley, J.W., O’Connell, M.T., Everitt, B.J., and Robbins, T.W. (2000) Increased acetylcholine release in the rat medial prefrontal cortex during performance of a visual at-tentional task. Eur J Neurosci. 12, 3051-3058.CrossRefPubMedGoogle Scholar
  53. Penschuck, S., Chen-Bee, C.H., Prakash, N., and Frostig, R.D. (2002) In vivo modulation of a cortical functional sensory representation shortly after topical cholinergic agent applica-tion. J Comp Neurol. 452, 38-50.CrossRefPubMedGoogle Scholar
  54. Perriol, M.P., Dujardin, K., Derambure, P., Marcq, A., Bourriez, J.L., Laureau, E., Pasquier, F., Defebvre, L., and Destee, A. (2005) Disturbance of sensory filtering in dementia with Lewy bodies: comparison with Parkinson’s disease dementia and Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 76, 106-108.CrossRefPubMedGoogle Scholar
  55. Plenz, D. and Kital, S.T. (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature. 400, 677-682.CrossRefPubMedGoogle Scholar
  56. Riccio, C.A. and Reynolds, C.R. (2001) Continuous performance tests are sensitive to ADHD in adults but lack specificity. A review and critique for differential diagnosis. Ann N Y Acad Sci. 931, 113-139.PubMedCrossRefGoogle Scholar
  57. Robbins, T.W. and Everitt, B.J. (2002) Limbic-striatal memory systems and drug addiction. Neurobiol Learn Mem. 78, 625-636.CrossRefPubMedGoogle Scholar
  58. Sarter, M., Nelson, C.L., and Bruno, J.P. (2005) Cortical cholinergic transmission and cortical information processing in schizophrenia. Schizophr Bull. 31, 117-138.CrossRefPubMedGoogle Scholar
  59. Sarter, M., Bruno, J.P., Parikh, V., Martinez, V., Kozak, R., and Richards, J.B. (2006) Fore-brain dopaminergic-cholinergic interactions, attentional effort, psychostimulant addiction and schizophrenia. Exs. 98, 65-86.PubMedGoogle Scholar
  60. Schultz, W. (1998) Predictive reward signal of dopamine neurons. J Neurophysiol. 80, 1-27.PubMedGoogle Scholar
  61. Schultz, W. (2002) Getting formal with dopamine and reward. Neuron. 36, 241-263.CrossRefPubMedGoogle Scholar
  62. Sealfon, S.C. and Olanow, C.W. (2000) Dopamine receptors: from structure to behavior. Trends Neurosci. 23, S34-S40.CrossRefPubMedGoogle Scholar
  63. Seamans, J.K., Durstewitz, D., Christie, B.R., Stevens, C.F., and Sejnowski, T.J. (2001a) Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci USA. 98, 301-306.CrossRefPubMedGoogle Scholar
  64. Seamans, J.K., Gorelova, N., Durstewitz, D., and Yang, C.R. (2001b) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci. 21, 3628-3638.PubMedGoogle Scholar
  65. Seamans, J.K. and Yang, C.R. (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol. 74, 1-58.CrossRefPubMedGoogle Scholar
  66. Shimono, K., Brucher, F., Granger, R., Lynch, G., and Taketani, M. (2000) Origins and distri-bution of cholinergically induced beta rhythms in hippocampal slices. J Neurosci. 20, 8462-8473.PubMedGoogle Scholar
  67. Takahashi, H., Higuchi, M., and Suhara, T. (2006) The role of extrastriatal dopamine D2 receptors in schizophrenia. Biol Psychiatry. 59, 919-928.CrossRefPubMedGoogle Scholar
  68. Tandon, R. (1999) Cholinergic aspects of schizophrenia. Br J Psychiatry Suppl, 7-11.Google Scholar
  69. Tseng, K.Y. and O’Donnell, P. (2005) Post-pubertal emergence of prefrontal cortical up states induced by D1-NMDA co-activation. Cereb Cortex. 15, 49-57.CrossRefPubMedGoogle Scholar
  70. Tseng, K.Y. and O’Donnell, P. (2006) Dopamine Modulation of Prefrontal Cortical Interneu-rons Changes during Adolescence. Cereb Cortex. Jul 3; [Epub ahead of print]Google Scholar
  71. Ungless, M.A. (2004) Dopamine: the salient issue. Trends Neurosci. 27, 702-706.CrossRefPubMedGoogle Scholar
  72. Voytko, M.L., Olton, D.S., Richardson, R.T., Gorman, L.K., Tobin, J.R., and Price, D.L. (1994) Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci. 14, 167-186.PubMedGoogle Scholar
  73. Zhang, L., Zhou, F.M., and Dani, J.A. (2004) Cholinergic drugs for Alzheimer’s disease enhance in vitro dopamine release. Mol Pharmacol. 66, 538-544.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Marco Atzori
    • 1
  • Rodrigo D. Paz
    • 2
  1. 1.School for Behavioral and Brain SciencesUniversity of TexasDallasUSA
  2. 2.Department of Psychiatry & NeuroscienceUniversidad Diego PortalesChile

Personalised recommendations