Basal Ganglia – Cortex Interactions: Regulation of Cortical Function by D1 Dopamine Receptors in the Striatum

  • Heinz Steiner

This paper reviews recent findings of molecular imaging studies that investigated the role of striatal dopamine in the regulation of basal ganglia output and cortical function. These studies employed immediate-early genes such as c-fos and zif 268 as functional markers to determine the effects of dopamine depletion and local dopamine receptor stimulation in the striatum on cortical function. The results indicate that the D1 receptor-regulated direct striatal output pathway provides widespread activation of the cortex. The various anatomical pathways that could mediate this basal ganglia-cortical regulation are discussed. It is concluded that likely several pathways act in concert, some signaling specific motor commands, others providing more general (and widespread) cortical activation, perhaps related to arousal and attentional states, that is necessary for normal motor functioning. All these basal gangliacortical activating mechanisms appear to be facilitated by striatal dopamine.


Dopamine Receptor Basal Forebrain Dopamine Depletion Striatal Projection Neuron Basal Ganglion Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albin, R.L., Young, A.B. and Penney, J.B. (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366-375.PubMedGoogle Scholar
  2. Alexander, G.E., Crutcher, M.D. and DeLong, M.R. (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog. Brain Res. 85, 119-146.PubMedGoogle Scholar
  3. Alexander, G.E., DeLong, M.R. and Strick, P.L. (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357-381.PubMedGoogle Scholar
  4. Anderson, J.J., Chase, T.N. and Engber, T.M. (1993) Substance P increases release of acetyl-choline in the dorsal striatum of freely moving rats. Brain Res. 623, 189-194.PubMedGoogle Scholar
  5. Anderson, J.J., Kuo, S., Chase, T.N. and Engber, T.M. (1994) Dopamine D1 receptor-stimulated release of acetylcholine in rat striatum is mediated indirectly by activation of striatal neurokinin1 receptors. J. Pharmacol. Exp. Ther. 269, 1144-1151.PubMedGoogle Scholar
  6. Arbuthnott, G.W., MacLeod, N.K., Maxwell, D.J. and Wright, A.K. (1990) Distribution and synaptic contacts of the cortical terminals arising from neurons in the rat ventromedial tha-lamic nucleus. Neuroscience 38, 47-60.PubMedGoogle Scholar
  7. Arenas, E., Alberch, J., Perez-Navarro, E., Solsona, C. and Marsal, J. (1991) Neurokinin receptors differentially mediate endogenous acetylcholine release evoked by tachykinins in the neostriatum. J. Neurosci. 11, 2332-2338.PubMedGoogle Scholar
  8. Arnold, H.M., Nelson, C.L., Neigh, G.N., Sarter, M. and Bruno, J.P. (2000) Systemic and intra-accumbens administration of amphetamine differentially affects cortical acetylcho-line release. Neuroscience 96, 675-685.PubMedGoogle Scholar
  9. Badiani, A., Oates, M.M., Day, H.E., Watson, S.J., Akil, H. and Robinson, T.E. (1998) Amphetamine-induced behavior, dopamine release, and c-fos mRNA expression: modu-lation by environmental novelty. J. Neurosci. 18, 10579-10593.PubMedGoogle Scholar
  10. Badiani, A., Oates, M.M., Day, H.E., Watson, S.J., Akil, H. and Robinson, T.E. (1999) Envi-ronmental modulation of amphetamine-induced c-fos expression in D1 versus D2 striatal neurons. Behav. Brain Res. 103, 203-209.PubMedGoogle Scholar
  11. Berger, A. and Posner, M.I. (2000) Pathologies of brain attentional networks. Neurosci. Biobehav. Rev. 24, 3-5.PubMedGoogle Scholar
  12. Berger, B., Gaspar, P. and Verney, C. (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci. 14, 21-27.PubMedGoogle Scholar
  13. Berke, J.D., Paletzki, R.F., Aronson, G.J., Hyman, S.E. and Gerfen, C.R. (1998) A complex program of striatal gene expression induced by dopaminergic stimulation. J. Neurosci. 18, 5301-5310.PubMedGoogle Scholar
  14. Berretta, S., Robertson, H.A. and Graybiel, A.M. (1992) Dopamine and glutamate agonists stimulate neuron-specific expression of Fos-like protein in the striatum. J. Neurophysiol. 68, 767-777.PubMedGoogle Scholar
  15. Björklund, A. and Lindvall, O. (1984) Dopamine containing systems in the CNS. In: A. Björklund and T. Hökfelt (Eds.), Handbook of Chemical Neuroanatomy, Vol. 2, Classical Transmitters in the CNS, Part 1. Elsevier, London, pp. 55-122.Google Scholar
  16. Blandini, F., Fancellu, R., Orzi, F., Conti, G., Greco, R., Tassorelli, C. and Nappi, G. (2003) Selective stimulation of striatal dopamine receptors of the D1- or D2-class causes opposite changes of fos expression in the rat cerebral cortex. Eur. J. Neurosci. 17, 763-770.PubMedGoogle Scholar
  17. Bolam, J.P., Ingham, C.A., Izzo, P.N., Levey, A.I., Rye, D.B., Smith, A.D. and Wainer, B.H. (1986) Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat. Brain Res. 397, 279-289.PubMedGoogle Scholar
  18. Bouthenet, M.-L., Souil, E., Martres, M.-P., Sokoloff, P., Giros, B. and Schwartz, J.-C. (1991) Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res. 564, 203-219.PubMedGoogle Scholar
  19. Brownell, A.L., Canales, K., Chen, Y.I., Jenkins, B.G., Owen, C., Livni, E., Yu, M., Cicchetti, F., Sanchez-Pernaute, R. and Isacson, O. (2003) Mapping of brain function after MPTP-induced neurotoxicity in a primate Parkinson's disease model. Neuroimage 20, 1064-1075.PubMedGoogle Scholar
  20. Carlsson, M. and Carlsson, A. (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia - implications for schizophrenia and Parkinson’s disease. Trends Neurosci. 13, 272-276.PubMedGoogle Scholar
  21. Cenci, M.A., Campbell, K., Wictorin, K. and Björklund, A. (1992) Striatal c-fos induction by cocaine or apomorphine occurs preferentially in output neurons projecting to the substantia nigra in the rat. Eur. J. Neurosci. 4, 376-380.PubMedGoogle Scholar
  22. Cepeda, C., Buchwald, N.A. and Levine, M.S. (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes acti-vated. Proc. Natl. Acad. Sci. USA 90, 9576-9580.PubMedGoogle Scholar
  23. Cepeda, C. and Levine, M.S. (1998) Dopamine and N-methyl-D-aspartate receptor interac-tions in the neostriatum. Dev. Neurosci. 20, 1-18.PubMedGoogle Scholar
  24. Chaudhuri, A. (1997) Neural activity mapping with inducible transcription factors. Neurore-port 8, v-ix.Google Scholar
  25. Chaudhuri, A. and Cynader, M.S. (1993) Activity-dependent expression of the transcription factor Zif268 reveals ocular dominance columns in monkey visual cortex. Brain Res. 605, 349-353.PubMedGoogle Scholar
  26. Chevalier, G. and Deniau, J.M. (1990) Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci. 13, 277-280.PubMedGoogle Scholar
  27. Ciliax, B.J., Nash, N., Heilman, C., Sunahara, R., Hartney, A., Tiberi, M., Rye, D.B., Caron, M.G., Niznik, H.B. and Levey, A.I. (2000) Dopamine D5 receptor immunolocalization in rat and monkey brain. Synapse 37, 125-145.PubMedGoogle Scholar
  28. Cole, A.J., Bhat, R.V., Patt, C., Worley, P.F. and Baraban, J.M. (1992) D1 dopamine receptor activation of multiple transcription factor genes in rat striatum. J. Neurochem. 58, 1420-1426.PubMedGoogle Scholar
  29. Csillik, B., Rakic, P. and Knyihar-Csillik, E. (1998) Peptidergic innervation and the nicotinic acetylcholine receptor in the primate basal nucleus. Eur. J. Neurosci. 10, 573-585.PubMedGoogle Scholar
  30. Curran, E.J. and Watson, S.J. (1995) Dopamine receptor mRNA expression patterns by opioid peptide cells in the nucleus accumbens of the rat: a double in situ hybridization study. J. Comp. Neurol. 361, 57-76.PubMedGoogle Scholar
  31. Day, J. and Fibiger, H.C. (1992) Dopaminergic regulation of cortical acetylcholine release. Synapse 12, 281-286.PubMedGoogle Scholar
  32. Day, J. and Fibiger, H.C. (1993) Dopaminergic regulation of cortical acetylcholine release: effects of dopamine receptor agonists. Neuroscience 54, 643-648.PubMedGoogle Scholar
  33. Day, J.C., Tham, C.S. and Fibiger, H.C. (1994) Dopamine depletion attenuates amphetamine-induced increases of cortical acetylcholine release. Eur. J. Pharmacol. 263, 285-292.PubMedGoogle Scholar
  34. De Souza Silva, M.A., Hasenohrl, R.U., Tomaz, C., Schwarting, R.K.W. and Huston, J.P. (2000) Differential modulation of frontal cortex acetylcholine by injection of substance P into the nucleus basalis magnocellularis region in the freely-moving vs. the anesthetized preparation. Synapse 38, 243-253.PubMedGoogle Scholar
  35. Defagot, M.C., Malchiodi, E.L., Villar, M.J. and Antonelli, M.C. (1997) Distribution of D4 dopamine receptor in rat brain with sequence-specific antibodies. Mol. Brain Res. 45, 1-12.PubMedGoogle Scholar
  36. DeLong, M.R. (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281-285.PubMedGoogle Scholar
  37. Dilts, R.P.J., Helton, T.E. and McGinty, J.F. (1993) Selective induction of Fos and FRA im-munoreactivity within the mesolimbic and mesostriatal dopamine terminal fields. Synapse 13, 251-263.PubMedGoogle Scholar
  38. Donoghue, J.P. and Carroll, K.L. (1987) Cholinergic modulation of sensory responses in rat primary somatic sensory cortex. Brain Res. 408, 367-371.PubMedGoogle Scholar
  39. Drago, J., Gerfen, C.R., Westphal, H. and Steiner, H. (1996) D1 dopamine receptor-deficient mouse: Cocaine-induced regulation of immediate-early gene and substance P expression in the striatum. Neuroscience 74, 813-823.PubMedGoogle Scholar
  40. Ferguson, S.M. and Robinson, T.E. (2004) Amphetamine-evoked gene expression in striato-pallidal neurons: regulation by corticostriatal afferents and the ERK/MAPK signaling cascade. J. Neurochem. 91, 337-348.PubMedGoogle Scholar
  41. Filipkowski, R.K., Rydz, M. and Kaczmarek, L. (2001) Expression of c-fos, Fos B, Jun B, and Zif268 transcription factor proteins in rat barrel cortex following apomorphine-evoked whisking behavior. Neuroscience 106, 679-688.PubMedGoogle Scholar
  42. Gaspar, P., Bloch, B. and Le Moine, C. (1995) D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur. J. Neuro-sci. 7, 1050-1063.Google Scholar
  43. Gerfen, C.R. (1991) Substance P (neurokinin-1) receptor mRNA is selectively expressed in cholinergic neurons in the striatum and basal forebrain. Brain Res. 556, 165-170.PubMedGoogle Scholar
  44. Gerfen, C.R. (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 15, 133-139.PubMedGoogle Scholar
  45. Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F.J., Jr. and Sibley, D.R. (1990) D1 and D2 dopamine receptor-regulated gene expression of striatoni-gral and striatopallidal neurons. Science 250, 1429-1432.PubMedGoogle Scholar
  46. Gerfen, C.R., Keefe, K.A. and Gauda, E.B. (1995) D1 and D2 dopamine receptor function in the striatum: coactivation of D1- and D2-dopamine receptors on separate populations of neurons results in potentiated immediate-early gene response in D1-containing neurons. J. Neurosci. 15, 8167-8176.PubMedGoogle Scholar
  47. Gerfen, C.R., Staines, W.A., Arbuthnott, G.W. and Fibiger, H.C. (1982) Crossed connections of the substantia nigra in the rat. J. Comp. Neurol. 207, 283-303.PubMedGoogle Scholar
  48. Gerfen, C.R. and Wilson, C.J. (1996) The basal ganglia. In: L.W. Swanson, A. Björklund and T. Hökfelt (Eds.), Handbook of Chemical Neuroanatomy. Elsevier, Amsterdam, pp. 371-468.Google Scholar
  49. Graybiel, A.M. (1997) The basal ganglia and cognitive pattern generators. Schizophr. Bull. 23, 459-469.PubMedGoogle Scholar
  50. Graybiel, A.M., Canales, J.J. and Capper-Loup, C. (2000) Levodopa-induced dyskinesias and dopamine-dependent stereotypies: a new hypothesis. Trends Neurosci. 23, S71-S77.PubMedGoogle Scholar
  51. Graybiel, A.M., Moratalla, R. and Robertson, H.A. (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc. Natl. Acad. Sci. USA 87, 6912-6916.PubMedGoogle Scholar
  52. Groenewegen, H.J. and Berendse, H.W. (1994) The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci. 17, 52-57.PubMedGoogle Scholar
  53. Groenewegen, H.J., Berendse, H.W., Wolters, J.G. and Lohman, A.H. (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog. Brain Res. 85, 95-116.PubMedGoogle Scholar
  54. Grove, E.A., Domesick, V.B. and Nauta, W.J. (1986) Light microscopic evidence of striatal input to intrapallidal neurons of cholinergic cell group Ch4 in the rat: a study employing the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res. 367, 379-384.PubMedGoogle Scholar
  55. Haber, S. and McFarland, N.R. (2001) The place of the thalamus in frontal cortical-basal ganglia circuits. Neuroscientist 7, 315-324.PubMedGoogle Scholar
  56. Haber, S.N. (2003) The primate basal ganglia: parallel and integrative networks. J. Chem. Neuroanat. 26, 317-330.PubMedGoogle Scholar
  57. Harlan, R.E. and Garcia, M.M. (1998) Drugs of abuse and immediate-early genes in the fore-brain. Mol. Neurobiol. 16, 221-267.PubMedGoogle Scholar
  58. Henderson, Z. (1997) The projection from the striatum to the nucleus basalis in the rat: an electron microscopic study. Neuroscience 78, 943-955.PubMedGoogle Scholar
  59. Herkenham, M. (1979) The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. J. Comp. Neurol. 183, 487-517.PubMedGoogle Scholar
  60. Herkenham, M. (1980) Laminar organization of thalamic projections to the rat neocortex. Science 207, 532-535.PubMedGoogle Scholar
  61. Howard, M.A. and Simons, D.J. (1994) Physiologic effects of nucleus basalis magnocellularis stimulation on rat barrel cortex neurons. Exp. Brain Res. 102, 21-33.PubMedGoogle Scholar
  62. Hyman, S.E., Cole, R.L., Schwarzschild, M., Cole, D., Hope, B. and Konradi, C. (1996) Mo-lecular mechanisms of striatal gene regulation: a critical role for glutamate in dopamine-mediated gene induction. In: K.M. Merchant (Ed.), Pharmacological Regulation of Gene Expression in the CNS. CRC, Boca Raton, FL, pp. 115-131.Google Scholar
  63. Hyman, S.E. and Nestler, E.J. (1996) Initiation and adaptation: a paradigm for understanding psychotropic drug action. Am. J. Psychiatry 153, 151-162.PubMedGoogle Scholar
  64. Ingham, C.A., Bolam, J.P., Wainer, B.H. and Smith, A.D. (1985) A correlated light and elec-tron microscopic study of identified cholinergic basal forebrain neurons that project to the cortex in the rat. J. Comp. Neurol. 239, 176-192.PubMedGoogle Scholar
  65. Joel, D. and Weiner, I. (1994) The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 63, 363-379.PubMedGoogle Scholar
  66. Johansson, B., Lindström, K. and Fredholm, B.B. (1994) Differences in the regional and cellular localization of c-fos messenger RNA induced by amphetamine, cocaine and caf-feine in the rat. Neuroscience 59, 837-849.PubMedGoogle Scholar
  67. Kaczmarek, L. and Chaudhuri, A. (1997) Sensory regulation of immediate-early gene expres-sion in mammalian visual cortex: implications for functional mapping and neural plastic-ity. Brain Res. Rev. 23, 237-256.Google Scholar
  68. Kawaguchi, Y., Wilson, C.J. and Emson, P.C. (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J. Neurosci. 10, 3421-3438.PubMedGoogle Scholar
  69. Kosofsky, B.E., Genova, L.M. and Hyman, S.E. (1995) Substance P phenotype defines specificity of c-fos induction by cocaine in developing rat striatum. J. Comp. Neurol. 351, 41-50.PubMedGoogle Scholar
  70. Krout, K.E., Belzer, R.E. and Loewy, A.D. (2002) Brainstem projections to midline and intra-laminar thalamic nuclei of the rat. J. Comp. Neurol. 448, 53-101.PubMedGoogle Scholar
  71. Krout, K.E., Loewy, A.D., Westby, G.W. and Redgrave, P. (2001) Superior colliculus projec-tions to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol. 431, 198-216.PubMedGoogle Scholar
  72. LaHoste, G.J., Ruskin, D.N. and Marshall, J.F. (1996) Cerebrocortical Fos expression follow-ing dopaminergic stimulation: D1/D2 synergism and its breakdown. Brain Res. 728, 97-104.PubMedGoogle Scholar
  73. LaHoste, G.J., Yu, J. and Marshall, J.F. (1993) Striatal Fos expression is indicative of dopa-mine D1/D2 synergism and receptor supersensitivity. Proc. Natl. Acad. Sci. USA 90, 7451-7455.PubMedGoogle Scholar
  74. Le Moine, C. and Bloch, B. (1995) D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J. Comp. Neu-rol. 355, 418-426.Google Scholar
  75. Le Moine, C. and Bloch, B. (1996) Expression of the D3 dopamine receptor in peptidergic neurons of the nucleus accumbens: comparison with the D1 and D2 dopamine receptors. Neuroscience 73, 131-143.PubMedGoogle Scholar
  76. Le Moine, C., Normand, E., Guitteny, A.F., Fouque, B., Teoule, R. and Bloch, B. (1990) Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc. Natl. Acad. Sci. USA 87, 230-234.PubMedGoogle Scholar
  77. Le Moine, C., Svenningsson, P., Fredholm, B.B. and Bloch, B. (1997) Dopamine-adenosine interactions in the striatum and the globus pallidus: inhibition of striatopallidal neurons through either D2 or A2A receptors enhances D1 receptor-mediated effects on c-fos ex-pression. J. Neurosci. 17, 8038-8048.PubMedGoogle Scholar
  78. Lindefors, N., Brene, S., Herrera-Marschitz, M. and Persson, H. (1989) Region specific regu-lation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain. Exp. Brain Res. 77, 611-620.PubMedGoogle Scholar
  79. Lindefors, N., Brene, S., Herrera-Marschitz, M. and Persson, H. (1990) Neuropeptide gene expression in brain is differentially regulated by midbrain dopamine neurons. Exp. Brain Res. 80, 489-500.PubMedGoogle Scholar
  80. Mansour, A., Meador-Woodruff, J.H., Bunzow, J.R., Civelli, O., Akil, H. and Watson, S.J. (1990) Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: an in situ hybridization-receptor autoradiographic analysis. J. Neurosci. 10, 2587-2600.PubMedGoogle Scholar
  81. McHaffie, J.G., Stanford, T.R., Stein, B.E., Coizet, V. and Redgrave, P. (2005) Subcortical loops through the basal ganglia. Trends Neurosci. 28, 401-407.PubMedGoogle Scholar
  82. Melzer, P. and Steiner, H. (1997) Stimulus-dependent expression of immediate-early genes in rat somatosensory cortex. J. Comp. Neurol. 380, 145-153.PubMedGoogle Scholar
  83. Mengod, G., Vilaro, M.T., Niznik, H.B., Sunahara, R.K., Seeman, P., O’Dowd, B.F. and Palacios, J.M. (1991) Visualization of a dopamine D1 receptor mRNA in human and rat brain. Mol. Brain Res. 10, 185-191.PubMedGoogle Scholar
  84. Middleton, F.A. and Strick, P.L. (1996) The temporal lobe is a target of output from the basal ganglia. Proc. Natl. Acad. Sci. USA 93, 8683-8687.PubMedGoogle Scholar
  85. Middleton, F.A. and Strick, P.L. (1997) New concepts about the organization of basal ganglia output. Adv. Neurol. 74, 57-68.PubMedGoogle Scholar
  86. Middleton, F.A. and Strick, P.L. (2000) Basal ganglia and cerebellar loops: motor and cogni-tive circuits. Brain Res. Rev. 31, 236-250.Google Scholar
  87. Middleton, F.A. and Strick, P.L. (2002) Basal-ganglia ‘projections’ to the prefrontal cortex of the primate. Cereb. Cortex 12, 926-935.PubMedGoogle Scholar
  88. Mink, J.W. (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381-425.PubMedGoogle Scholar
  89. Moore, H., Fadel, J., Sarter, M. and Bruno, J.P. (1999) Role of accumbens and cortical dopa-mine receptors in the regulation of cortical acetylcholine release. Neuroscience 88, 811-822.PubMedGoogle Scholar
  90. Moore, H., Sarter, M. and Bruno, J.P. (1995) Bidirectional modulation of cortical acetylcho-line efflux by infusion of benzodiazepine receptor ligands into the basal forebrain. Neuro-sci. Lett. 189, 31-34.Google Scholar
  91. Moratalla, R., Xu, M., Tonegawa, S. and Graybiel, A.M. (1996) Cellular responses to psy-chomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor. Proc. Natl. Acad. Sci. USA 93, 14928-14933.PubMedGoogle Scholar
  92. Nakajima, Y., Stanfield, P.R., Yamaguchi, K. and Nakajima, S. (1991) Substance P excites cultured cholinergic neurons in the basal forebrain. Adv. Exp. Med. Biol. 295, 157-167.PubMedGoogle Scholar
  93. Nicola, S.M., Surmeier, J. and Malenka, R.C. (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci. 23, 185-215.PubMedGoogle Scholar
  94. Orieux, G., Francois, C., Feger, J. and Hirsch, E.C. (2002) Consequences of dopaminergic denervation on the metabolic activity of the cortical neurons projecting to the subthalamic nucleus in the rat. J. Neurosci. 22, 8762-8770.PubMedGoogle Scholar
  95. Orosz, D. and Bennett, J.P. (1990) Baseline and apomorphine-induced extracellular levels of nigral substance P are increased in an animal model of Parkinson’s disease. Eur. J. Phar-macol. 182, 509-514.Google Scholar
  96. Oueslati, A., Breysse, N., Amalric, M., Kerkerian-Le Goff, L. and Salin, P. (2005) Dysfunc-tion of the cortico-basal ganglia-cortical loop in a rat model of early parkinsonism is re-versed by metabotropic glutamate receptor 5 antagonism. Eur. J. Neurosci. 22, 2765-2774.PubMedGoogle Scholar
  97. Parent, A. and Hazrati, L.N. (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res. Rev. 20, 91-127.PubMedGoogle Scholar
  98. Paul, M.L., Graybiel, A.M., David, J.-C. and Robertson, H.A. (1992) D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson’s disease. J. Neurosci. 12, 3729-3742.PubMedGoogle Scholar
  99. Pelled, G., Bergman, H. and Goelman, G. (2002) Bilateral overactivation of the sensorimotor cortex in the unilateral rodent model of Parkinson’s disease - a functional magnetic reso-nance imaging study. Eur. J. Neurosci. 15, 389-394.PubMedGoogle Scholar
  100. Petitet, F., Glowinski, J. and Beaujouan, J.C. (1991) Evoked release of acetylcholine in the rat striatum by stimulation of tachykinin NK-1 receptors. Eur. J. Pharmacol. 192, 203-204.PubMedGoogle Scholar
  101. Pinna, A., Wardas, J., Cristalli, G. and Morelli, M. (1997) Adenosine A2A receptor agonists increase Fos-like immunoreactivity in mesolimbic areas. Brain Res. 759, 41-49.PubMedGoogle Scholar
  102. Rasmusson, D.D. (2000) The role of acetylcholine in cortical synaptic plasticity. Behav. Brain Res. 115, 205-218.PubMedGoogle Scholar
  103. Redgrave, P., Prescott, T.J. and Gurney, K. (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009-1023.PubMedGoogle Scholar
  104. Robbins, T.W. (2000) Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp. Brain Res. 133, 130-138.PubMedGoogle Scholar
  105. Robbins, T.W., Granon, S., Muir, J.L., Durantou, F., Harrison, A. and Everitt, B.J. (1998) Neural systems underlying arousal and attention. Implications for drug abuse. Ann. N. Y. Acad. Sci. 846, 222-237.PubMedGoogle Scholar
  106. Robertson, G.S. and Fibiger, H.C. (1992) Neuroleptics increase c-fos expression in the fore-brain: contrasting effects of haloperidol and clozapine. Neuroscience 46, 315-328.PubMedGoogle Scholar
  107. Robertson, G.S. and Jian, M. (1995) D1 and D2 dopamine receptors differentially increase Fos-like immunoreactivity in accumbal projections to the ventral pallidum and midbrain. Neuroscience 64, 1019-1034.PubMedGoogle Scholar
  108. Robertson, G.S. and Staines, W.A. (1994) D1 dopamine receptor agonist-induced Fos-like immunoreactivity occurs in basal forebrain and mesopontine tegmentum cholinergic neu-rons and striatal neurons immunoreactive for neuropeptide Y. Neuroscience 59, 375-387.PubMedGoogle Scholar
  109. Robertson, G.S., Vincent, S.R. and Fibiger, H.C. (1990) Striatonigral projection neurons contain D1 dopamine receptor-activated c-fos. Brain Res. 523, 288-290.PubMedGoogle Scholar
  110. Robertson, G.S., Vincent, S.R. and Fibiger, H.C. (1992) D1 and D2 dopamine receptors dif-ferentially regulate c-fos expression in striatonigral and striatopallidal neurons. Neurosci-ence 49, 285-296.Google Scholar
  111. Rodriguez-Puertas, R., Herrera-Marschitz, M., Koistinaho, J. and Hokfelt, T. (1999) Dopamine D1 receptor modulation of glutamate receptor messenger RNA levels in the neocortex and neostriatum of unilaterally 6-hydroxydopamine-lesioned rats. Neuroscience 89, 781-797.PubMedGoogle Scholar
  112. Rolland, A.S., Herrero, M.T., Garcia-Martinez, V., Ruberg, M., Hirsch, E.C. and Francois, C. (2007) Metabolic activity of cerebellar and basal ganglia-thalamic neurons is reduced in parkinsonism. Brain 130, 265-275.PubMedGoogle Scholar
  113. Sagar, S.M., Sharp, F.R. and Curran, T. (1988) Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240, 1328-1331.PubMedGoogle Scholar
  114. Sarter, M. and Bruno, J.P. (1999) Abnormal regulation of corticopetal cholinergic neurons and impaired information processing in neuropsychiatric disorders. Trends Neurosci. 22, 67-74.PubMedGoogle Scholar
  115. Sarter, M., Givens, B. and Bruno, J.P. (2001) The cognitive neuroscience of sustained atten-tion: where top-down meets bottom-up. Brain Res. Rev. 35, 146-160.PubMedGoogle Scholar
  116. Schwarting, R.K.W. and Huston, J.P. (1996) Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological squeal. Prog. Neurobiol. 49, 215-266.PubMedGoogle Scholar
  117. Sharp, F.R., Sagar, S.M. and Swanson, R.A. (1993) Metabolic mapping with cellular resolu-tion: c-fos vs. 2-deoxyglucose. Crit. Rev. Neurobiol. 7, 205-228.PubMedGoogle Scholar
  118. Sheng, M. and Greenberg, M.E. (1990) The regulation and function of c-fos and other imme-diate early genes in the nervous system. Neuron 4, 477-485.PubMedGoogle Scholar
  119. Smith, Y., Raju, D.V., Pare, J.F. and Sidibe, M. (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci. 27, 520-527.PubMedGoogle Scholar
  120. Solanto, M.V. (2002) Dopamine dysfunction in AD/HD: integrating clinical and basic neuro-science research. Behav. Brain Res. 130, 65-71.PubMedGoogle Scholar
  121. Staiger, J.F., Bisler, S., Schleicher, A., Gass, P., Stehle, J.H. and Zilles, K. (2000) Exploration of a novel environment leads to the expression of inducible transcription factors in barrel-related columns. Neuroscience 99, 7-16.PubMedGoogle Scholar
  122. Steiner, H. and Gerfen, C.R. (1994) Tactile sensory input regulates basal and apomorphine-induced immediate-early gene expression in rat barrel cortex. J. Comp. Neurol. 344, 297-304.PubMedGoogle Scholar
  123. Steiner, H. and Gerfen, C.R. (1995) Dynorphin opioid inhibition of cocaine-induced, D1 dopamine receptor-mediated immediate-early gene expression in the striatum. J. Comp. Neurol. 353, 200-212.PubMedGoogle Scholar
  124. Steiner, H. and Gerfen, C.R. (1996) Dynorphin regulates D1 dopamine receptor-mediated responses in the striatum: relative contributions of pre- and postsynaptic mechanisms in dorsal and ventral striatum demonstrated by altered immediate-early gene induction. J. Comp. Neurol. 376, 530-541.PubMedGoogle Scholar
  125. Steiner, H. and Gerfen, C.R. (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp. Brain Res. 123, 60-76.PubMedGoogle Scholar
  126. Steiner, H. and Kitai, S.T. (2000) Regulation of rat cortex function by D1 dopamine receptors in the striatum. J. Neurosci. 20, 5449-5460.PubMedGoogle Scholar
  127. Steiner, H. and Kitai, S.T. (2001) Unilateral striatal dopamine depletion: time-dependent effects on cortical function and behavioural correlates. Eur. J. Neurosci. 14, 1390-1404.PubMedGoogle Scholar
  128. Surmeier, D.J., Song, W.-J. and Yan, Z. (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci. 16, 6579-6591.PubMedGoogle Scholar
  129. Takano, K., Stanfield, P.R., Nakajima, S. and Nakajima, Y. (1995) Protein kinase C-mediated inhibition of an inward rectifier potassium channel by substance P in nucleus basalis neu-rons. Neuron 14, 999-1008.PubMedGoogle Scholar
  130. Taymans, J.M., Kia, H.K., Groenewegen, H.J., Leysen, J.E. and Langlois, X. (2005) Bilateral control of brain activity by dopamine D1 receptors: evidence from induction patterns of regulator of G protein signaling 2 and c-fos mRNA in D1-challenged hemiparkinsonian rats. Neuroscience 134, 643-656.PubMedGoogle Scholar
  131. Uslaner, J., Badiani, A., Norton, C.S., Day, H.E., Watson, S.J., Akil, H. and Robinson, T.E. (2001) Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context. Eur. J. Neuro-sci. 13, 1977-1983.Google Scholar
  132. Uylings, H.B., Groenewegen, H.J. and Kolb, B. (2003) Do rats have a prefrontal cortex? Behav. Brain Res. 146, 3-17.PubMedGoogle Scholar
  133. Wang, J.Q. and McGinty, J.F. (1996) Glutamatergic and cholinergic regulation of immediate-early gene and neuropeptide gene expression in the striatum. In: K.M. Merchant (Ed.), Pharmacological Regulation of Gene Expression in the CNS. CRC, Boca Raton, FL, pp. 81-113.Google Scholar
  134. Wang, J.Q., Smith, A.J.W. and McGinty, J.F. (1995) A single injection of amphetamine or methamphetamine induces dynamic alterations in c-fos, zif/268 and preprodynorphin mes-senger RNA expression in rat forebrain. Neuroscience 68, 83-95.PubMedGoogle Scholar
  135. Yano, M. and Steiner, H. (2005) Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits. Neuroscience 132, 855-865.PubMedGoogle Scholar
  136. You, Z.-B., Herrera-Marschitz, M., Nylander, I., Goiny, M., O’Connor, W.T., Ungerstedt, U. and Terenius, L. (1994) The striatonigral dynorphin pathway of the rat studied with in vivo mi-crodialysis - II. Effects of dopamine D1 and D2 receptor agonists. Neuroscience 63, 427-434.PubMedGoogle Scholar
  137. Young, S.T., Porrino, L.J. and Iadarola, M.J. (1991) Cocaine induces striatal c-fos-immunoreactive proteins via dopaminergic D1 receptors. Proc. Natl. Acad. Sci. USA 88, 1291-1295.PubMedGoogle Scholar
  138. Zaborszky, L. and Cullinan, W.E. (1992) Projections from the nucleus accumbens to choliner-gic neurons of the ventral pallidum: a correlated light and electron microscopic double-immunolabeling study in rat. Brain Res. 570, 92-101.PubMedGoogle Scholar
  139. Zaborszky, L., Cullinan, W.E. and Braun, A. (1991) Afferents to basal forebrain cholinergic projection neurons: an update. Adv. Exp. Med. Biol. 295, 43-100.PubMedGoogle Scholar
  140. Zhang, L., Lou, D., Jiao, H., Zhang, D., Wang, X., Xia, Y., Zhang, J. and Xu, M. (2004) Cocaine-induced intracellular signaling and gene expression are oppositely regulated by the dopamine D1 and D3 receptors. J. Neurosci. 24, 3344-3354.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Heinz Steiner
    • 1
  1. 1.Department of Cellular & Molecular PharmacologyRosalind Franklin University of Medicine and ScienceNorth ChicagoUSA

Personalised recommendations