Advertisement

Dopaminergic Modulation of Prefrontal Cortex Network Dynamics

  • Daniel Durstewitz

Our knowledge about how the neocortex fulfils its diverse computational duties is at present very rudimentary. As knowledge about biochemical, physiological, and anatomical processes and structures accumulates, we seem to be even more and more puzzled by the unveiling layers of mind-blowing complexity and dense networks of interaction between so many biophysical and biochemical variables. It seems clear that a full understanding of nervous system function cannot be gained solely by dissection of physiological processes into simple cause-effect chains, as these are blurred and lost within the multitude of highly non-linear reciprocal interactions and feedback loops governing the dynamics of the whole nervous system, yielding often completely counter-intuitive results. Although simple cause-effect chains are the building blocks of higher order dynamics and an in depth understanding of them therefore remains important, additional approaches are required that put these building blocks back together again, and study the emergent dynamics of the whole system with its implications for computation and cognition. Computational Neuroscience tries to provide some of these tools, and the present article will give an account of the dopaminergic modulation of prefrontal cortex (PFC) from this perspective.

Keywords

Prefrontal Cortex Firing Rate Pyramidal Cell Average Firing Rate Delay Response Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksay, E., Gamkrelidze, G., Seung, H.S., Baker, R. and Tank, D.W. (2001) In vivo intracellu-lar recording and perturbation of persistent activity in a neural integrator. Nat. Neurosci. 4 (2), 184-193.CrossRefPubMedGoogle Scholar
  2. Arnsten, A.F., Cai, J.X., Murpy, B.L. and Goldman-Rakic, P.S. (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young and aged monkeys. Psychopharmacol-ogy (Berl.) 116, 143-151.CrossRefGoogle Scholar
  3. Averbeck, B.B. and Lee, D. (2007) Prefrontal neural correlates of memory for sequences. J. Neurosci. 27(9), 2204-2211.CrossRefPubMedGoogle Scholar
  4. Averbeck, B.B., Sohn, J.W. and Lee, D. (2006) Activity in prefrontal cortex during dynamic selection of action sequences. Nat. Neurosci. 276-282.Google Scholar
  5. Beggs, J.M. and Plenz, D. (2003) Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167-11177.PubMedGoogle Scholar
  6. Bertschinger, N. and Natschläger, T. (2004) Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 16, 1413-1436.CrossRefPubMedGoogle Scholar
  7. Brody, C.D. and Hopfield, J.J. (2003) Simple networks for spike-timing-based computation, with application to olfactory processing. Neuron 37, 843-852.CrossRefPubMedGoogle Scholar
  8. Brody, C.D., Hernandez, A., Zainos, A. and Romo, R. (2003) Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb. Cortex 13, 1196-1207.CrossRefPubMedGoogle Scholar
  9. Brunel, N. and Wang, X.J. (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J. Comput. Neurosci. 11(1), 63-85.CrossRefPubMedGoogle Scholar
  10. Cai, J.X. and Arnsten, A.F. (1997) Dose-dependent effects of the dopamine D1 receptor ago-nists A77636 or SKF81297 on spatial working memory in aged monkeys. J. Pharmacol. Exp. Ther. 283, 183-189.PubMedGoogle Scholar
  11. Cohen, J.D., Braver, T.S. and Brown, J.W. (2002) Computational perspectives on dopamine function in prefrontal cortex. Curr. Opin. Neurobiol. 12(2), 223-229.CrossRefPubMedGoogle Scholar
  12. Compte, A., Constantinidis, C., Tegner, J., Raghavachari, S., Chafee, M.V., Goldman-Rakic, P.S. and Wang, X.J. (2003) Temporally irregular mnemonic persistent activity in prefron-tal neurons of monkeys during a delayed response task. J. Neurophysiol. 90, 3441-3454.CrossRefPubMedGoogle Scholar
  13. Dagher, A., Owen, A.M., Boecker, H. and Brooks, D.J. (1999) Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain 122, 1973-1987.CrossRefPubMedGoogle Scholar
  14. Dehaene, S., Jonides, J., Smith, E.E. and Spitzer, M. (1999) Thinking and problem solving. In: Fundamental Neuroscience, M.J. Zigmond, F.E. Bloom, S.C. Landis, J.L. Roberts and L.R. Squire (eds.). San Diego: Academic Press, pp. 1543-1564.Google Scholar
  15. Descarries, L., Lemay, B., Doucet, G. and Berger, B. (1987) Regional and laminar density of the dopamine innervation in adult rat cerebral cortex. Neuroscience 21, 807-824.CrossRefPubMedGoogle Scholar
  16. Dias, R., Robbins, T.W. and Roberts, A.C. (1997) Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin card sort test: restriction to novel situations and independence from “on-line” processing. J. Neurosci. 17, 9285-9297.PubMedGoogle Scholar
  17. Dong, Y. and White, F.J. (2003) Dopamine D1-class receptors selectively modulate a slowly inactivating potassium current in rat medial prefrontal cortex pyramidal neurons. J. Neuro-sci. 23, 2686-2695.Google Scholar
  18. Dreher, J.C., Guigon, E. and Burnod, Y. (2002) A model of prefrontal cortex dopaminergic modulation during the delayed alternation task. J. Cogn. Neurosci. 14, 853-865.CrossRefPubMedGoogle Scholar
  19. Duncan, J. and Owen, A.M. (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475-483.CrossRefPubMedGoogle Scholar
  20. Durstewitz, D. (2003) Self-organizing neural integrator predicts interval times through climb-ing activity. J. Neurosci. 23, 5342-5353.PubMedGoogle Scholar
  21. Durstewitz, D. (2004) Neural representation of interval time. Neuroreport 15, 745-749.CrossRefPubMedGoogle Scholar
  22. Durstewitz, D. and Seamans, J.K. (2002) The computational role of dopamine D1 receptors in working memory. Neural Networks 15, 561-572.CrossRefPubMedGoogle Scholar
  23. Durstewitz, D. and Seamans, J.K. (2006) Beyond bistability: biophysics and temporal dynam-ics of working memory. Neuroscience 139, 119-133.CrossRefPubMedGoogle Scholar
  24. Durstewitz, D. and Gabriel, T. (2007) Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cereb. Cortex 17, 894-908. [Epub 2006].CrossRefPubMedGoogle Scholar
  25. Durstewitz, D., Kelc, M. and Güntürkün, O. (1999) A neurocomputational theory of the dopaminergic modulation of working memory functions. J. Neurosci. 19, 2807-2822.PubMedGoogle Scholar
  26. Durstewitz, D., Seamans, J.K. and Sejnowski, T.J. (2000a) Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J. Neurophysiol. 83, 1733-1750.PubMedGoogle Scholar
  27. Durstewitz, D., Seamans, J.K. and Sejnowski, T.J. (2000b) Neurocomputational models of working memory. Nat. Neurosci. 3(Suppl.) 1184-1191.CrossRefPubMedGoogle Scholar
  28. Fallon, J.H. and Loughlin, S.E. (1995) Substantia nigra. In: Paxinos, G (ed.) The Rat Nervous System. Academic, San Diego, pp. 215-237.Google Scholar
  29. Floresco, S.B., Magyar, O., Ghods-Sharifi, S., Vexelman, C. and Tse, M.T. (2006) Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacology. 31, 297-309.CrossRefPubMedGoogle Scholar
  30. Funahashi, S., Bruce, C.J. and Goldman-Rakic, P.S. (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331-349.PubMedGoogle Scholar
  31. Fuster, J. (1997) The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe. Philadelphia: Lippincott-Raven.Google Scholar
  32. Fuster, J.M. (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J. Neurophysiol. 36, 61-78.PubMedGoogle Scholar
  33. Fuster, J.M. (2001) The prefrontal cortex - an update: time is of the essence. Neuron 30, 319-333.CrossRefPubMedGoogle Scholar
  34. Fuster, J.M., Bodner, M. and Kroger, J.K. (2000) Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405, 347-351.CrossRefPubMedGoogle Scholar
  35. Gao, W.J. (2007) Acute clozapine suppresses synchronized pyramidal synaptic network activ-ity by increasing inhibition in the ferret prefrontal cortex. J. Neurophysiol. 97(2), 1196-1208.CrossRefPubMedGoogle Scholar
  36. Gao, W.J., Krimer, L.S. and Goldman-Rakic, P.S. (2001) Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. Proc. Natl. Acad. Sci. U.S.A. 98, 295-300.CrossRefPubMedGoogle Scholar
  37. Golomb, D., Shedmi, A., Curtu, R. and Ermentrout, G.B. (2006) Persistent synchronized bursting in cortical tissues with low magnesium concentration: a modeling study. J. Neu-rophysiol. 95, 1049-1067.Google Scholar
  38. Gorelova, N.A. and Yang, C.R. (2000) Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro. J. Neurophysiol. 84, 75-87.PubMedGoogle Scholar
  39. Gorelova, N., Seamans, J.K. and Yang, C.R. (2002) Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. J. Neurophysiol. 88, 3150-3166.CrossRefPubMedGoogle Scholar
  40. Greengard, P. (2001a) The neurobiology of dopamine signaling. Biosci. Rep. 21(3), 247-269.CrossRefPubMedGoogle Scholar
  41. Greengard, P. (2001b) The neurobiology of slow synaptic transmission. Science 294(5544), 1024-1030.CrossRefPubMedGoogle Scholar
  42. Hopfield, J.J. (1995) Pattern recognition computation using action potential timing for stimu-lus representation. Nature 376, 33-36.CrossRefPubMedGoogle Scholar
  43. Hopfield, J.J. and Brody, C.D. (2001) What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proc. Natl. Acad. Sci. U.S.A. 98(3), 1282-1287.CrossRefPubMedGoogle Scholar
  44. Howard, M.W., Rizzuto, D.S., Caplan, J.B., Madsen, J.R., Lisman, J., Aschenbrenner-Scheibe, R., Schulze-Bonhage, A. and Kahana, M.J. (2003) Gamma oscillations correlate with working memory load in humans. Cereb. Cortex 13, 1369-1374.CrossRefPubMedGoogle Scholar
  45. Kiehn, O. and Eken, T. (1998) Functional role of plateau potentials in vertebrate motor neu-rons. Curr. Opin. Neurobiol. 8(6), 746-752. Review.CrossRefPubMedGoogle Scholar
  46. Komura, Y., Tamura, R., Uwano, T., Nishijo, H., Kaga, K. and Ono, T. (2001) Retrospective and prospective coding for predicted reward in the sensory thalamus. Nature 412, 546-549.CrossRefPubMedGoogle Scholar
  47. Kubota, K. and Niki, H. (1971) Prefrontal cortical unit activity and delayed alternation per-formance in monkeys. J. Neurophysiol. 34, 337-347.PubMedGoogle Scholar
  48. Lapish, C.C., Kroener, S., Durstewitz, D., Lavin, A. and Seamans, J.K. (2007) The ability of the mesocortical dopamine system to operate in distinct temporal modes. Psychopharma-cology 191, 609-625. [Epub 2006].CrossRefGoogle Scholar
  49. Lavin, A., Nogueira, L., Lapish, C.C., Wightman, R.M., Phillips P.E. and Seamans J.K. (2005) Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J. Neurosci. 25, 5013-5023.CrossRefPubMedGoogle Scholar
  50. Lee, H., Simpson, G.V., Logothetis, N.K. and Rainer, G. (2005) Phase locking of single neu-ron activity to theta oscillations during working memory in monkey extrastriate visual cor-tex. Neuron 45, 147-156.CrossRefPubMedGoogle Scholar
  51. Legenstein, R.A. and Maass, W. (2007) Edge of chaos and prediction of computational per-formance for neural microcircuit models. Neural Networks, in press.Google Scholar
  52. Ljungberg, T., Apicella, P. and Schultz, W. (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol. 67, 145-163.PubMedGoogle Scholar
  53. Lutzenberger, W., Ripper, B., Busse, L., Birbaumer, N. and Kaiser J. (2002) Dynamics of gamma-band activity during an audiospatial working memory task in humans. J. Neurosci. 22, 5630-5638.PubMedGoogle Scholar
  54. Marder, E., Abbott, L.F., Turrigiano, G.G., Liu, Z. and Golowasch, J. (1996) Memory from the dynamics of intrinsic membrane currents. Proc. Natl. Acad. Sci. U.S.A. 93, 13481-13486.CrossRefPubMedGoogle Scholar
  55. Mehta, M.A., Manes, F.F., Magnolfi, G., Sahakian, B.J. and Robbins, T.W. (2004) Impaired set-shifting and dissociable effects on tests of spatial working memory following the dopamine D2 receptor antagonist sulpiride in human volunteers. Psychopharmacology (Berl). 176, 331-342.CrossRefGoogle Scholar
  56. Meyer-Lindenberg, A. and Weinberger, D.R. (2007) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat. Rev. Neurosci. 7, 818-827.CrossRefGoogle Scholar
  57. Miller, E.K. and Cohen, J.D. (2001) An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167-202.CrossRefPubMedGoogle Scholar
  58. Miller, E.K., Erickson, C.A. and Desimone, R. (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154-5167.PubMedGoogle Scholar
  59. Milner, B. and Petrides, M. (1984) Behavioural effects of frontal-lobe lesions in man. Trends Neurosci. 7, 403-407.CrossRefGoogle Scholar
  60. Montaron, M.F., Bouyer, J.J., Rougeul, A. and Buser, P. (1982) Ventral mesencephalic teg-mentum (VMT) controls electrocortical beta rhythms and associated attentive behaviour in the cat. Behav. Brain Res. 6, 129-145.CrossRefPubMedGoogle Scholar
  61. Murphy, B.L., Arnsten, A.F.T., Goldman-Rakic, P.S. and Roth, R.H. (1996a) Increased dopa-mine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc. Natl. Acad. Sci. U.S.A. 93, 1325-1329.CrossRefPubMedGoogle Scholar
  62. Murphy, B.L., Arnsten, A.F.T., Jentsch, J.D. and Roth, R.H. (1996b) Dopamine and spatial working memory in rats and monkeys: pharmacological reversal of stress-induced im-pairment. J. Neurosci. 16, 7768-7775.PubMedGoogle Scholar
  63. Nishi, A., Snyder, G.L. and Greengard, P. (1997) Bidirectional regulation of DARPP-32 phos-phorylation by dopamine. J. Neurosci. 17(21), 8147-8155.PubMedGoogle Scholar
  64. Nishi, A., Bibb, J.A., Matsuyama, S., Hamada, M., Higashi, H., Nairn, A.C. and Greengard, P. (2002) Regulation of DARPP-32 dephosphorylation at PKA- and Cdk5-sites by NMDA and AMPA receptors: distinct roles of calcineurin and protein phosphatase-2A. J. Neuro-chem. 81(4), 832-841.Google Scholar
  65. Nishi, A., Watanabe, Y., Higashi, H., Tanaka, M., Nairn, A.C. and Greengard, P. (2005) Glu-tamate regulation of DARPP-32 phosphorylation in neostriatal neurons involves activation of multiple signaling cascades. Proc. Natl. Acad. Sci. U.S.A. 102(4), 1199-1204.CrossRefPubMedGoogle Scholar
  66. Pesaran, B., Pezaris, J.S., Sahani, M., Mitra, P.P. and Andersen, R.A. (2002) Temporal struc-ture in neuronal activity during working memory in macaque parietal cortex. Nat. Neuro-sci. 5, 805-811.CrossRefGoogle Scholar
  67. Peters, Y., Barnhardt, N.E. and O’Donnell, P. (2004) Prefrontal cortical up states are synchro-nized with ventral tegmental area activity. Synapse 52, 143-152.CrossRefPubMedGoogle Scholar
  68. Procyk, E. and Goldman-Rakic, P.S. (2006) Modulation of dorsolateral prefrontal delay activ-ity during self-organized behavior. J. Neurosci. 26(44), 11313-11323.CrossRefPubMedGoogle Scholar
  69. Quintana, J. and Fuster, J.M. (1999) From perception to action: temporal integrative functions of prefrontal and parietal neurons. Cereb. Cortex 9, 213-221.CrossRefPubMedGoogle Scholar
  70. Quintana, J., Yajeya, J. and Fuster, J.M. (1988) Prefrontal representation of stimulus attributes during delay tasks. I. Unit activity in cross-temporal integration of sensory and sensory-motor information. Brain Res. 474, 211-221.CrossRefPubMedGoogle Scholar
  71. Raghavachari, S., Kahana, M.J., Rizzuto, D.S., Caplan, J.B., Kirschen, M.P., Bourgeois, B., Madsen, J.R. and Lisman, J.E. (2001) Gating of human theta oscillations by a working memory task. J. Neurosci. 21, 3175-3183.PubMedGoogle Scholar
  72. Rainer, G. and Miller, E.K. (2002) Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. Eur. J. Neurosci. 15, 1244-1254.CrossRefPubMedGoogle Scholar
  73. Rainer, G., Asaad, W.F. and Miller, E.K. (1998) Selective representation of relevant informa-tion by neurons in the primate prefrontal cortex. Nature 393, 577-579.CrossRefPubMedGoogle Scholar
  74. Rainer, G., Rao, S.C. and Miller, E.K. (1999) Prospective coding for objects in primate pre-frontal cortex. J. Neurosci. 19, 5493-5505.PubMedGoogle Scholar
  75. Rao, S.C., Rainer, G. and Miller, E.K. (1997) Integration of what and where in the primate prefrontal cortex. Science 276, 821-824.CrossRefPubMedGoogle Scholar
  76. Reutimann, J., Yakovlev, V., Fusi, S. and Senn, W. (2004) Climbing neuronal activity as an event-based cortical representation of time. J. Neurosci. 24, 3295-3303.CrossRefPubMedGoogle Scholar
  77. Riehle, A., Grün, S., Diesmann, M. and Aertsen, A. (1997) Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278, 1950-1953.CrossRefPubMedGoogle Scholar
  78. Ruskin, D.N., Bergstrom, D.A., Tierney, P.L. and Walters, J.R. (2003) Correlated multisecond oscillations in firing rate in the basal ganglia: modulation by dopamine and the subtha-lamic nucleus. Neuroscience 117, 427-438.CrossRefPubMedGoogle Scholar
  79. Sargisson, R.J. and White, K.G. (2001) Generalization of delayed matching to sample follow-ing training at different delays. J. Exp. Anal. Behav. 75, 1-14.CrossRefPubMedGoogle Scholar
  80. Sawaguchi, T. and Goldman-Rakic, P.S. (1994) The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J. Neurophysiol. 71, 515-528.PubMedGoogle Scholar
  81. Sawaguchi, T., Matsumara, M. and Kubota, K. (1988) Dopamine enhances the neuronal activ-ity of spatial short-term memory task in the primate prefrontal cortex. Neurosci. Res. 5, 465-473.CrossRefPubMedGoogle Scholar
  82. Sawaguchi, T., Matsumara, M. and Kubota, K. (1990a) Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. J. Neurophysiol. 63, 1385-1400.PubMedGoogle Scholar
  83. Sawaguchi, T., Matsumara, M. and Kubota, K. (1990b) Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex. J. Neuro-physiol. 63, 1401-1412.Google Scholar
  84. Schultz, W. and Romo, R. (1990) Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioral reactions. J. Neurophysiol. 63, 607-624.PubMedGoogle Scholar
  85. Seamans, J.K., Floresco, S.B. and Phillips, A.G. (1998) D1 receptor modulation of hippocam-pal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J. Neurosci. 18, 1613-1621.PubMedGoogle Scholar
  86. Seamans, J.K., Durstewitz, D., Christie, B.R., Stevens, C.F. and Sejnowski, T.J. (2001a) Do-pamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cor-tex neurons. Proc. Nat. Acad. Sci. U.S.A. 98, 301-306.CrossRefGoogle Scholar
  87. Seamans, J.K., Gorelova, N., Durstewitz, D. and Yang, C.R. (2001b) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J. Neurosci. 21, 3628-3638.PubMedGoogle Scholar
  88. Sobotka, S., Diltz, M.D. and Ringo, J.L. (2005) Can delay-period activity explain working memory? J. Neurophysiol. 93, 128-136.CrossRefPubMedGoogle Scholar
  89. Strogatz, S.H. (1994) Nonlinear dynamic and chaos. Reading, MA: Addison-Wesley.Google Scholar
  90. Sutton, R.S. and Barto, A.G. (1998) Reinforcement learning. Cambridge: MIT Press.Google Scholar
  91. Tost, H., Meyer-Lindenberg, A., Klein, S., Schmitt, A., Hohn, F., Tenckhoff, A., Ruf, M., Ende, G., Rietschel, M., Henn, F.A. and Braus, D.F. (2006) D2 antidopaminergic modula-tion of frontal lobe function in healthy human subjects. Biol. Psychiatry 60, 1196-1205.CrossRefPubMedGoogle Scholar
  92. Trantham-Davidson, H., Neely, L.C., Lavin, A. and Seamans, J.K. (2004) Mechanisms under-lying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex. J. Neurosci. 24, 10652-10659.CrossRefPubMedGoogle Scholar
  93. Tseng, K.Y. and O’Donnell, P. (2005) Post-pubertal emergence of prefrontal cortical up states induced by D1-NMDA co-activation. Cereb. Cortex 15, 49-57.CrossRefPubMedGoogle Scholar
  94. Unterrainer, J.M. and Owen, A.M. (2006) Planning and problem solving: from neuropsychol-ogy to functional neuroimaging. J. Physiol. (Paris) 99(4-6), 308-317.CrossRefGoogle Scholar
  95. Vijayraghavan, S., Wang, M., Birnbaum, S.G., Williams, G.V. and Arnsten, A.F. (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat. Neurosci. 10(3), 376-384.CrossRefPubMedGoogle Scholar
  96. Wallis, J.D., Anderson, K.C. and Miller, E.K. (2001) Single neurons in prefrontal cortex encode abstract rules. Nature 411, 953-956.CrossRefPubMedGoogle Scholar
  97. Winterer, G. and Weinberger, D.R. (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci. 27, 683-690.CrossRefPubMedGoogle Scholar
  98. Yang, C.R. and Seamans, J.K. (1996) Dopamine D1 receptor actions in layers V-VI rat pre-frontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J. Neu-rosci. 16, 1922-1935.Google Scholar
  99. Young, C.E. and Yang, C.R. (2004) Dopamine D1/D5 receptor modulates state-dependent switching of soma-dendritic Ca2+ potentials via differential protein kinase A and C activa-tion in rat prefrontal cortical neurons. J. Neurosci. 24, 8-23.CrossRefPubMedGoogle Scholar
  100. Zahrt, J., Taylor, J.R., Mathew, R.G. and Arnsten, A.F. (1997) Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory per-formance. J. Neurosci. 17, 8528-8535.PubMedGoogle Scholar
  101. Zheng, P., Zhang, X.X., Bunney, B.S. and Shi, W.X. (1999) Opposite modulation of cortical N-methyl-D-aspartate receptor-mediated responses by low and high concentrations of do-pamine. Neuroscience 91, 527-535.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Daniel Durstewitz
    • 1
  1. 1.Centre for Theoretical and Computational Neuroscience, Faculty of ScienceUniversity of PlymouthDrake CircusUK

Personalised recommendations