Skip to main content

Dopaminergic Modulation of Prefrontal Cortex Network Dynamics

  • Chapter
Monoaminergic Modulation of Cortical Excitability

Our knowledge about how the neocortex fulfils its diverse computational duties is at present very rudimentary. As knowledge about biochemical, physiological, and anatomical processes and structures accumulates, we seem to be even more and more puzzled by the unveiling layers of mind-blowing complexity and dense networks of interaction between so many biophysical and biochemical variables. It seems clear that a full understanding of nervous system function cannot be gained solely by dissection of physiological processes into simple cause-effect chains, as these are blurred and lost within the multitude of highly non-linear reciprocal interactions and feedback loops governing the dynamics of the whole nervous system, yielding often completely counter-intuitive results. Although simple cause-effect chains are the building blocks of higher order dynamics and an in depth understanding of them therefore remains important, additional approaches are required that put these building blocks back together again, and study the emergent dynamics of the whole system with its implications for computation and cognition. Computational Neuroscience tries to provide some of these tools, and the present article will give an account of the dopaminergic modulation of prefrontal cortex (PFC) from this perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aksay, E., Gamkrelidze, G., Seung, H.S., Baker, R. and Tank, D.W. (2001) In vivo intracellu-lar recording and perturbation of persistent activity in a neural integrator. Nat. Neurosci. 4 (2), 184-193.

    Article  PubMed  Google Scholar 

  • Arnsten, A.F., Cai, J.X., Murpy, B.L. and Goldman-Rakic, P.S. (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young and aged monkeys. Psychopharmacol-ogy (Berl.) 116, 143-151.

    Article  Google Scholar 

  • Averbeck, B.B. and Lee, D. (2007) Prefrontal neural correlates of memory for sequences. J. Neurosci. 27(9), 2204-2211.

    Article  PubMed  Google Scholar 

  • Averbeck, B.B., Sohn, J.W. and Lee, D. (2006) Activity in prefrontal cortex during dynamic selection of action sequences. Nat. Neurosci. 276-282.

    Google Scholar 

  • Beggs, J.M. and Plenz, D. (2003) Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167-11177.

    PubMed  Google Scholar 

  • Bertschinger, N. and Natschläger, T. (2004) Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 16, 1413-1436.

    Article  PubMed  Google Scholar 

  • Brody, C.D. and Hopfield, J.J. (2003) Simple networks for spike-timing-based computation, with application to olfactory processing. Neuron 37, 843-852.

    Article  PubMed  Google Scholar 

  • Brody, C.D., Hernandez, A., Zainos, A. and Romo, R. (2003) Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb. Cortex 13, 1196-1207.

    Article  PubMed  Google Scholar 

  • Brunel, N. and Wang, X.J. (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J. Comput. Neurosci. 11(1), 63-85.

    Article  PubMed  Google Scholar 

  • Cai, J.X. and Arnsten, A.F. (1997) Dose-dependent effects of the dopamine D1 receptor ago-nists A77636 or SKF81297 on spatial working memory in aged monkeys. J. Pharmacol. Exp. Ther. 283, 183-189.

    PubMed  Google Scholar 

  • Cohen, J.D., Braver, T.S. and Brown, J.W. (2002) Computational perspectives on dopamine function in prefrontal cortex. Curr. Opin. Neurobiol. 12(2), 223-229.

    Article  PubMed  Google Scholar 

  • Compte, A., Constantinidis, C., Tegner, J., Raghavachari, S., Chafee, M.V., Goldman-Rakic, P.S. and Wang, X.J. (2003) Temporally irregular mnemonic persistent activity in prefron-tal neurons of monkeys during a delayed response task. J. Neurophysiol. 90, 3441-3454.

    Article  PubMed  Google Scholar 

  • Dagher, A., Owen, A.M., Boecker, H. and Brooks, D.J. (1999) Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain 122, 1973-1987.

    Article  PubMed  Google Scholar 

  • Dehaene, S., Jonides, J., Smith, E.E. and Spitzer, M. (1999) Thinking and problem solving. In: Fundamental Neuroscience, M.J. Zigmond, F.E. Bloom, S.C. Landis, J.L. Roberts and L.R. Squire (eds.). San Diego: Academic Press, pp. 1543-1564.

    Google Scholar 

  • Descarries, L., Lemay, B., Doucet, G. and Berger, B. (1987) Regional and laminar density of the dopamine innervation in adult rat cerebral cortex. Neuroscience 21, 807-824.

    Article  PubMed  Google Scholar 

  • Dias, R., Robbins, T.W. and Roberts, A.C. (1997) Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin card sort test: restriction to novel situations and independence from “on-line” processing. J. Neurosci. 17, 9285-9297.

    PubMed  Google Scholar 

  • Dong, Y. and White, F.J. (2003) Dopamine D1-class receptors selectively modulate a slowly inactivating potassium current in rat medial prefrontal cortex pyramidal neurons. J. Neuro-sci. 23, 2686-2695.

    Google Scholar 

  • Dreher, J.C., Guigon, E. and Burnod, Y. (2002) A model of prefrontal cortex dopaminergic modulation during the delayed alternation task. J. Cogn. Neurosci. 14, 853-865.

    Article  PubMed  Google Scholar 

  • Duncan, J. and Owen, A.M. (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475-483.

    Article  PubMed  Google Scholar 

  • Durstewitz, D. (2003) Self-organizing neural integrator predicts interval times through climb-ing activity. J. Neurosci. 23, 5342-5353.

    PubMed  Google Scholar 

  • Durstewitz, D. (2004) Neural representation of interval time. Neuroreport 15, 745-749.

    Article  PubMed  Google Scholar 

  • Durstewitz, D. and Seamans, J.K. (2002) The computational role of dopamine D1 receptors in working memory. Neural Networks 15, 561-572.

    Article  PubMed  Google Scholar 

  • Durstewitz, D. and Seamans, J.K. (2006) Beyond bistability: biophysics and temporal dynam-ics of working memory. Neuroscience 139, 119-133.

    Article  PubMed  Google Scholar 

  • Durstewitz, D. and Gabriel, T. (2007) Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cereb. Cortex 17, 894-908. [Epub 2006].

    Article  PubMed  Google Scholar 

  • Durstewitz, D., Kelc, M. and Güntürkün, O. (1999) A neurocomputational theory of the dopaminergic modulation of working memory functions. J. Neurosci. 19, 2807-2822.

    PubMed  Google Scholar 

  • Durstewitz, D., Seamans, J.K. and Sejnowski, T.J. (2000a) Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J. Neurophysiol. 83, 1733-1750.

    PubMed  Google Scholar 

  • Durstewitz, D., Seamans, J.K. and Sejnowski, T.J. (2000b) Neurocomputational models of working memory. Nat. Neurosci. 3(Suppl.) 1184-1191.

    Article  PubMed  Google Scholar 

  • Fallon, J.H. and Loughlin, S.E. (1995) Substantia nigra. In: Paxinos, G (ed.) The Rat Nervous System. Academic, San Diego, pp. 215-237.

    Google Scholar 

  • Floresco, S.B., Magyar, O., Ghods-Sharifi, S., Vexelman, C. and Tse, M.T. (2006) Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacology. 31, 297-309.

    Article  PubMed  Google Scholar 

  • Funahashi, S., Bruce, C.J. and Goldman-Rakic, P.S. (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331-349.

    PubMed  Google Scholar 

  • Fuster, J. (1997) The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe. Philadelphia: Lippincott-Raven.

    Google Scholar 

  • Fuster, J.M. (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J. Neurophysiol. 36, 61-78.

    PubMed  Google Scholar 

  • Fuster, J.M. (2001) The prefrontal cortex - an update: time is of the essence. Neuron 30, 319-333.

    Article  PubMed  Google Scholar 

  • Fuster, J.M., Bodner, M. and Kroger, J.K. (2000) Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405, 347-351.

    Article  PubMed  Google Scholar 

  • Gao, W.J. (2007) Acute clozapine suppresses synchronized pyramidal synaptic network activ-ity by increasing inhibition in the ferret prefrontal cortex. J. Neurophysiol. 97(2), 1196-1208.

    Article  PubMed  Google Scholar 

  • Gao, W.J., Krimer, L.S. and Goldman-Rakic, P.S. (2001) Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. Proc. Natl. Acad. Sci. U.S.A. 98, 295-300.

    Article  PubMed  Google Scholar 

  • Golomb, D., Shedmi, A., Curtu, R. and Ermentrout, G.B. (2006) Persistent synchronized bursting in cortical tissues with low magnesium concentration: a modeling study. J. Neu-rophysiol. 95, 1049-1067.

    Google Scholar 

  • Gorelova, N.A. and Yang, C.R. (2000) Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro. J. Neurophysiol. 84, 75-87.

    PubMed  Google Scholar 

  • Gorelova, N., Seamans, J.K. and Yang, C.R. (2002) Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. J. Neurophysiol. 88, 3150-3166.

    Article  PubMed  Google Scholar 

  • Greengard, P. (2001a) The neurobiology of dopamine signaling. Biosci. Rep. 21(3), 247-269.

    Article  PubMed  Google Scholar 

  • Greengard, P. (2001b) The neurobiology of slow synaptic transmission. Science 294(5544), 1024-1030.

    Article  PubMed  Google Scholar 

  • Hopfield, J.J. (1995) Pattern recognition computation using action potential timing for stimu-lus representation. Nature 376, 33-36.

    Article  PubMed  Google Scholar 

  • Hopfield, J.J. and Brody, C.D. (2001) What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proc. Natl. Acad. Sci. U.S.A. 98(3), 1282-1287.

    Article  PubMed  Google Scholar 

  • Howard, M.W., Rizzuto, D.S., Caplan, J.B., Madsen, J.R., Lisman, J., Aschenbrenner-Scheibe, R., Schulze-Bonhage, A. and Kahana, M.J. (2003) Gamma oscillations correlate with working memory load in humans. Cereb. Cortex 13, 1369-1374.

    Article  PubMed  Google Scholar 

  • Kiehn, O. and Eken, T. (1998) Functional role of plateau potentials in vertebrate motor neu-rons. Curr. Opin. Neurobiol. 8(6), 746-752. Review.

    Article  PubMed  Google Scholar 

  • Komura, Y., Tamura, R., Uwano, T., Nishijo, H., Kaga, K. and Ono, T. (2001) Retrospective and prospective coding for predicted reward in the sensory thalamus. Nature 412, 546-549.

    Article  PubMed  Google Scholar 

  • Kubota, K. and Niki, H. (1971) Prefrontal cortical unit activity and delayed alternation per-formance in monkeys. J. Neurophysiol. 34, 337-347.

    PubMed  Google Scholar 

  • Lapish, C.C., Kroener, S., Durstewitz, D., Lavin, A. and Seamans, J.K. (2007) The ability of the mesocortical dopamine system to operate in distinct temporal modes. Psychopharma-cology 191, 609-625. [Epub 2006].

    Article  Google Scholar 

  • Lavin, A., Nogueira, L., Lapish, C.C., Wightman, R.M., Phillips P.E. and Seamans J.K. (2005) Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J. Neurosci. 25, 5013-5023.

    Article  PubMed  Google Scholar 

  • Lee, H., Simpson, G.V., Logothetis, N.K. and Rainer, G. (2005) Phase locking of single neu-ron activity to theta oscillations during working memory in monkey extrastriate visual cor-tex. Neuron 45, 147-156.

    Article  PubMed  Google Scholar 

  • Legenstein, R.A. and Maass, W. (2007) Edge of chaos and prediction of computational per-formance for neural microcircuit models. Neural Networks, in press.

    Google Scholar 

  • Ljungberg, T., Apicella, P. and Schultz, W. (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol. 67, 145-163.

    PubMed  Google Scholar 

  • Lutzenberger, W., Ripper, B., Busse, L., Birbaumer, N. and Kaiser J. (2002) Dynamics of gamma-band activity during an audiospatial working memory task in humans. J. Neurosci. 22, 5630-5638.

    PubMed  Google Scholar 

  • Marder, E., Abbott, L.F., Turrigiano, G.G., Liu, Z. and Golowasch, J. (1996) Memory from the dynamics of intrinsic membrane currents. Proc. Natl. Acad. Sci. U.S.A. 93, 13481-13486.

    Article  PubMed  Google Scholar 

  • Mehta, M.A., Manes, F.F., Magnolfi, G., Sahakian, B.J. and Robbins, T.W. (2004) Impaired set-shifting and dissociable effects on tests of spatial working memory following the dopamine D2 receptor antagonist sulpiride in human volunteers. Psychopharmacology (Berl). 176, 331-342.

    Article  Google Scholar 

  • Meyer-Lindenberg, A. and Weinberger, D.R. (2007) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat. Rev. Neurosci. 7, 818-827.

    Article  Google Scholar 

  • Miller, E.K. and Cohen, J.D. (2001) An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167-202.

    Article  PubMed  Google Scholar 

  • Miller, E.K., Erickson, C.A. and Desimone, R. (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154-5167.

    PubMed  Google Scholar 

  • Milner, B. and Petrides, M. (1984) Behavioural effects of frontal-lobe lesions in man. Trends Neurosci. 7, 403-407.

    Article  Google Scholar 

  • Montaron, M.F., Bouyer, J.J., Rougeul, A. and Buser, P. (1982) Ventral mesencephalic teg-mentum (VMT) controls electrocortical beta rhythms and associated attentive behaviour in the cat. Behav. Brain Res. 6, 129-145.

    Article  PubMed  Google Scholar 

  • Murphy, B.L., Arnsten, A.F.T., Goldman-Rakic, P.S. and Roth, R.H. (1996a) Increased dopa-mine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc. Natl. Acad. Sci. U.S.A. 93, 1325-1329.

    Article  PubMed  Google Scholar 

  • Murphy, B.L., Arnsten, A.F.T., Jentsch, J.D. and Roth, R.H. (1996b) Dopamine and spatial working memory in rats and monkeys: pharmacological reversal of stress-induced im-pairment. J. Neurosci. 16, 7768-7775.

    PubMed  Google Scholar 

  • Nishi, A., Snyder, G.L. and Greengard, P. (1997) Bidirectional regulation of DARPP-32 phos-phorylation by dopamine. J. Neurosci. 17(21), 8147-8155.

    PubMed  Google Scholar 

  • Nishi, A., Bibb, J.A., Matsuyama, S., Hamada, M., Higashi, H., Nairn, A.C. and Greengard, P. (2002) Regulation of DARPP-32 dephosphorylation at PKA- and Cdk5-sites by NMDA and AMPA receptors: distinct roles of calcineurin and protein phosphatase-2A. J. Neuro-chem. 81(4), 832-841.

    Google Scholar 

  • Nishi, A., Watanabe, Y., Higashi, H., Tanaka, M., Nairn, A.C. and Greengard, P. (2005) Glu-tamate regulation of DARPP-32 phosphorylation in neostriatal neurons involves activation of multiple signaling cascades. Proc. Natl. Acad. Sci. U.S.A. 102(4), 1199-1204.

    Article  PubMed  Google Scholar 

  • Pesaran, B., Pezaris, J.S., Sahani, M., Mitra, P.P. and Andersen, R.A. (2002) Temporal struc-ture in neuronal activity during working memory in macaque parietal cortex. Nat. Neuro-sci. 5, 805-811.

    Article  Google Scholar 

  • Peters, Y., Barnhardt, N.E. and O’Donnell, P. (2004) Prefrontal cortical up states are synchro-nized with ventral tegmental area activity. Synapse 52, 143-152.

    Article  PubMed  Google Scholar 

  • Procyk, E. and Goldman-Rakic, P.S. (2006) Modulation of dorsolateral prefrontal delay activ-ity during self-organized behavior. J. Neurosci. 26(44), 11313-11323.

    Article  PubMed  Google Scholar 

  • Quintana, J. and Fuster, J.M. (1999) From perception to action: temporal integrative functions of prefrontal and parietal neurons. Cereb. Cortex 9, 213-221.

    Article  PubMed  Google Scholar 

  • Quintana, J., Yajeya, J. and Fuster, J.M. (1988) Prefrontal representation of stimulus attributes during delay tasks. I. Unit activity in cross-temporal integration of sensory and sensory-motor information. Brain Res. 474, 211-221.

    Article  PubMed  Google Scholar 

  • Raghavachari, S., Kahana, M.J., Rizzuto, D.S., Caplan, J.B., Kirschen, M.P., Bourgeois, B., Madsen, J.R. and Lisman, J.E. (2001) Gating of human theta oscillations by a working memory task. J. Neurosci. 21, 3175-3183.

    PubMed  Google Scholar 

  • Rainer, G. and Miller, E.K. (2002) Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. Eur. J. Neurosci. 15, 1244-1254.

    Article  PubMed  Google Scholar 

  • Rainer, G., Asaad, W.F. and Miller, E.K. (1998) Selective representation of relevant informa-tion by neurons in the primate prefrontal cortex. Nature 393, 577-579.

    Article  PubMed  Google Scholar 

  • Rainer, G., Rao, S.C. and Miller, E.K. (1999) Prospective coding for objects in primate pre-frontal cortex. J. Neurosci. 19, 5493-5505.

    PubMed  Google Scholar 

  • Rao, S.C., Rainer, G. and Miller, E.K. (1997) Integration of what and where in the primate prefrontal cortex. Science 276, 821-824.

    Article  PubMed  Google Scholar 

  • Reutimann, J., Yakovlev, V., Fusi, S. and Senn, W. (2004) Climbing neuronal activity as an event-based cortical representation of time. J. Neurosci. 24, 3295-3303.

    Article  PubMed  Google Scholar 

  • Riehle, A., Grün, S., Diesmann, M. and Aertsen, A. (1997) Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278, 1950-1953.

    Article  PubMed  Google Scholar 

  • Ruskin, D.N., Bergstrom, D.A., Tierney, P.L. and Walters, J.R. (2003) Correlated multisecond oscillations in firing rate in the basal ganglia: modulation by dopamine and the subtha-lamic nucleus. Neuroscience 117, 427-438.

    Article  PubMed  Google Scholar 

  • Sargisson, R.J. and White, K.G. (2001) Generalization of delayed matching to sample follow-ing training at different delays. J. Exp. Anal. Behav. 75, 1-14.

    Article  PubMed  Google Scholar 

  • Sawaguchi, T. and Goldman-Rakic, P.S. (1994) The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J. Neurophysiol. 71, 515-528.

    PubMed  Google Scholar 

  • Sawaguchi, T., Matsumara, M. and Kubota, K. (1988) Dopamine enhances the neuronal activ-ity of spatial short-term memory task in the primate prefrontal cortex. Neurosci. Res. 5, 465-473.

    Article  PubMed  Google Scholar 

  • Sawaguchi, T., Matsumara, M. and Kubota, K. (1990a) Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. J. Neurophysiol. 63, 1385-1400.

    PubMed  Google Scholar 

  • Sawaguchi, T., Matsumara, M. and Kubota, K. (1990b) Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex. J. Neuro-physiol. 63, 1401-1412.

    Google Scholar 

  • Schultz, W. and Romo, R. (1990) Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioral reactions. J. Neurophysiol. 63, 607-624.

    PubMed  Google Scholar 

  • Seamans, J.K., Floresco, S.B. and Phillips, A.G. (1998) D1 receptor modulation of hippocam-pal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J. Neurosci. 18, 1613-1621.

    PubMed  Google Scholar 

  • Seamans, J.K., Durstewitz, D., Christie, B.R., Stevens, C.F. and Sejnowski, T.J. (2001a) Do-pamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cor-tex neurons. Proc. Nat. Acad. Sci. U.S.A. 98, 301-306.

    Article  Google Scholar 

  • Seamans, J.K., Gorelova, N., Durstewitz, D. and Yang, C.R. (2001b) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J. Neurosci. 21, 3628-3638.

    PubMed  Google Scholar 

  • Sobotka, S., Diltz, M.D. and Ringo, J.L. (2005) Can delay-period activity explain working memory? J. Neurophysiol. 93, 128-136.

    Article  PubMed  Google Scholar 

  • Strogatz, S.H. (1994) Nonlinear dynamic and chaos. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Sutton, R.S. and Barto, A.G. (1998) Reinforcement learning. Cambridge: MIT Press.

    Google Scholar 

  • Tost, H., Meyer-Lindenberg, A., Klein, S., Schmitt, A., Hohn, F., Tenckhoff, A., Ruf, M., Ende, G., Rietschel, M., Henn, F.A. and Braus, D.F. (2006) D2 antidopaminergic modula-tion of frontal lobe function in healthy human subjects. Biol. Psychiatry 60, 1196-1205.

    Article  PubMed  Google Scholar 

  • Trantham-Davidson, H., Neely, L.C., Lavin, A. and Seamans, J.K. (2004) Mechanisms under-lying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex. J. Neurosci. 24, 10652-10659.

    Article  PubMed  Google Scholar 

  • Tseng, K.Y. and O’Donnell, P. (2005) Post-pubertal emergence of prefrontal cortical up states induced by D1-NMDA co-activation. Cereb. Cortex 15, 49-57.

    Article  PubMed  Google Scholar 

  • Unterrainer, J.M. and Owen, A.M. (2006) Planning and problem solving: from neuropsychol-ogy to functional neuroimaging. J. Physiol. (Paris) 99(4-6), 308-317.

    Article  Google Scholar 

  • Vijayraghavan, S., Wang, M., Birnbaum, S.G., Williams, G.V. and Arnsten, A.F. (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat. Neurosci. 10(3), 376-384.

    Article  PubMed  Google Scholar 

  • Wallis, J.D., Anderson, K.C. and Miller, E.K. (2001) Single neurons in prefrontal cortex encode abstract rules. Nature 411, 953-956.

    Article  PubMed  Google Scholar 

  • Winterer, G. and Weinberger, D.R. (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci. 27, 683-690.

    Article  PubMed  Google Scholar 

  • Yang, C.R. and Seamans, J.K. (1996) Dopamine D1 receptor actions in layers V-VI rat pre-frontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J. Neu-rosci. 16, 1922-1935.

    Google Scholar 

  • Young, C.E. and Yang, C.R. (2004) Dopamine D1/D5 receptor modulates state-dependent switching of soma-dendritic Ca2+ potentials via differential protein kinase A and C activa-tion in rat prefrontal cortical neurons. J. Neurosci. 24, 8-23.

    Article  PubMed  Google Scholar 

  • Zahrt, J., Taylor, J.R., Mathew, R.G. and Arnsten, A.F. (1997) Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory per-formance. J. Neurosci. 17, 8528-8535.

    PubMed  Google Scholar 

  • Zheng, P., Zhang, X.X., Bunney, B.S. and Shi, W.X. (1999) Opposite modulation of cortical N-methyl-D-aspartate receptor-mediated responses by low and high concentrations of do-pamine. Neuroscience 91, 527-535.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Durstewitz, D. (2007). Dopaminergic Modulation of Prefrontal Cortex Network Dynamics. In: Tseng, KY., Atzori, M. (eds) Monoaminergic Modulation of Cortical Excitability. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72256-6_15

Download citation

Publish with us

Policies and ethics