Skip to main content

Regulation of Cortical Functions by the Central Noradrenergic System: Emerging Properties from an Old Friend

  • Chapter
Monoaminergic Modulation of Cortical Excitability

(VTA)-dopamine (DA) systems are two important brainstem neuromodulatory ascending pathways with a widespread cortical distribution. Historically, the NE system has been implicated in arousal whereas DA signals have been linked to reward and motivation. In addition to this early interpretation, recent findings indicate that the NE system also play an important role in the control of complex behaviors (Devilbiss and Waterhouse, 2004; Aston-Jones and Cohen, 2005a; Chamberlain et al., 2006). For example, neuronal activity in the LC, particularly the phasic firing mode, has been associated to the outcome of certain task-related decision processes, and it has been proposed that this enhancement of NE signal (presumably in the cortex) helps to optimize task performance (Aston-Jones and Cohen, 2005a). A similar pattern of firing response to task-related events has also been observed in DA neurons (Lidow et al., 1998). These data suggest that both NE and DA systems are responsive to motivationally salient events such as reward predictors.

The central NE system also plays a crucial role in determining the outcome of brain function in response to acute and chronic stress. Many neurochemical studies, in fact, have shown that NE is able to produce a stress response resulting from activation of the hypothalamus-pituitary-adrenal axis

In the past 20 years, extensive studies have been conducted to elucidate the role of LC NE during complex and specific behavioral performances and stress. Although the global effect of NE activation seems to lead to overall increases in neural responsiveness, alertness, and a temporary refinement of perceptual receptive fields, little is known about how NE receptors interact with other neural systems, in particular in brain regions involved in executive functions and cognition. In this chapter we will first review data from animal studies reporting the effects of NE on cortical neurons, and, secondly, we will summarize how NE-single cell interactions impact cortical functions by changing the behavior of cortical circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian, G. K., 1985. Modulation of a transient outward current in serotonergic neurones by alpha 1-adrenoceptors. Nature. 315, 501-503.

    Article  CAS  PubMed  Google Scholar 

  • Altman, I. M. and Corcoran, M. E., 1983. Facilitation of neocortical kindling by depletion of forebrain noradrenaline. Brain Res. 270, 174-177.

    Article  CAS  PubMed  Google Scholar 

  • Andrews, G. D. and Lavin, A., 2006. Methylphenidate increases cortical excitability via acti-vation of alpha-2 noradrenergic receptors. Neuropsychopharmacology. 31, 594-601.

    Article  CAS  PubMed  Google Scholar 

  • Arnsten, A. F., Cai, J. X. and Goldman-Rakic, P. S., 1988. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci. 8, 4287-4298.

    CAS  PubMed  Google Scholar 

  • Arnsten, A. F. and Li, B. M., 2005. Neurobiology of executive functions: catecholamine influ-ences on prefrontal cortical functions. Biol Psychiatry. 57, 1377-1384.

    Article  CAS  PubMed  Google Scholar 

  • Aston-Jones, G. and Bloom, F. E., 1981a. Activity of norepinephrine-containing locus coe-ruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neu-rosci. 1, 876-886.

    CAS  Google Scholar 

  • Aston-Jones, G. and Bloom, F. E., 1981b. Nonrepinephrine-containing locus coeruleus neu-rons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci. 1, 887-900.

    CAS  PubMed  Google Scholar 

  • Aston-Jones, G. and Cohen, J. D., 2005a. Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol. 493, 99-110.

    Article  CAS  PubMed  Google Scholar 

  • Aston-Jones, G. and Cohen, J. D., 2005b. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 28, 403-450.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, B. D., Huguenard, J. R. and Prince, D. A., 1998. Adrenergic modulation of GABAA receptor-mediated inhibition in rat sensorimotor cortex. J Neurophysiol. 79, 937-946.

    CAS  PubMed  Google Scholar 

  • Birnbaum, S. G., Yuan, P. X., Wang, M., Vijayraghavan, S., Bloom, A. K., Davis, D. J., Gobeske, K. T., Sweatt, J. D., Manji, H. K. and Arnsten, A. F., 2004. Protein kinase C over-activity impairs prefrontal cortical regulation of working memory. Science. 306, 882-884.

    Article  CAS  PubMed  Google Scholar 

  • Castner, S. A. and Goldman-Rakic, P. S., 2004. Enhancement of working memory in aged monkeys by a sensitizing regimen of dopamine D1 receptor stimulation. J Neurosci. 24, 1446-1450.

    Article  CAS  PubMed  Google Scholar 

  • Castner, S. A., Goldman-Rakic, P. S. and Williams, G. V., 2004. Animal models of working memory: insights for targeting cognitive dysfunction in schizophrenia. Psychopharmacol-ogy (Berl). 174, 111-125.

    CAS  Google Scholar 

  • Cecchi, M., Khoshbouei, H. and Morilak, D. A., 2002. Modulatory effects of norepinephrine, acting on alpha 1 receptors in the central nucleus of the amygdala, on behavioral and neu-roendocrine responses to acute immobilization stress. Neuropharmacology. 43, 1139-1147.

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain, S. R., Muller, U., Blackwell, A. D., Robbins, T. W. and Sahakian, B. J., 2006. Noradrenergic modulation of working memory and emotional memory in humans. Psy-chopharmacology (Berl). 188, 397-407.

    Article  CAS  Google Scholar 

  • Charpak, S., Gahwiler, B. H., Do, K. Q. and Knopfel, T., 1990. Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature. 347, 765-767.

    Article  CAS  PubMed  Google Scholar 

  • Cornil, C. A., Balthazart, J., Motte, P., Massotte, L. and Seutin, V., 2002. Dopamine activates noradrenergic receptors in the preoptic area. J Neurosci. 22, 9320-9330.

    CAS  PubMed  Google Scholar 

  • Devilbiss, D. M. and Waterhouse, B. D., 2000. Norepinephrine exhibits two distinct profiles of action on sensory cortical neuron responses to excitatory synaptic stimuli. Synapse. 37, 273-282.

    Article  CAS  PubMed  Google Scholar 

  • Devilbiss, D. M. and Waterhouse, B. D., 2004. The effects of tonic locus ceruleus output on sensory-evoked responses of ventral posterior medial thalamic and barrel field cortical neurons in the awake rat. J Neurosci. 24, 10773-10785.

    Article  CAS  PubMed  Google Scholar 

  • Dodt, H. U., Pawelzik, H. and Zieglgansberger, W., 1991. Actions of noradrenaline on neocor-tical neurons in vitro. Brain Res. 545, 307-311.

    Article  CAS  PubMed  Google Scholar 

  • Foehring, R. C., Schwindt, P. C. and Crill, W. E., 1989. Norepinephrine selectively reduces slow Ca2+- and Na+-mediated K+ currents in cat neocortical neurons. J Neurophysiol. 61, 245-256.

    CAS  PubMed  Google Scholar 

  • Foote, S. L., Aston-Jones, G. and Bloom, F. E., 1980. Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Natl Acad Sci U S A. 77, 3033-3037.

    Article  CAS  PubMed  Google Scholar 

  • Foote, S. L., Bloom, F. E. and Aston-Jones, G., 1983. Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev. 63, 844-914.

    CAS  PubMed  Google Scholar 

  • Fukudome, Y., Ohno-Shosaku, T., Matsui, M., Omori, Y., Fukaya, M., Tsubokawa, H., Taketo, M. M., Watanabe, M., Manabe, T. and Kano, M., 2004. Two distinct classes of mus-carinic action on hippocampal inhibitory synapses: M2-mediated direct suppression and M1/M3-mediated indirect suppression through endocannabinoid signalling. Eur J Neuro-sci. 19, 2682-2692.

    Article  Google Scholar 

  • Gellman, R. L. and Aghajanian, G. K., 1993. Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine activated GABAergic interneurons. Brain Res. 600, 63-73.

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic, P. S., Castner, S. A., Svensson, T. H., Siever, L. J. and Williams, G. V., 2004. Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dys-function. Psychopharmacology (Berl). 174, 3-16.

    Article  CAS  Google Scholar 

  • Hasselmo, M. E. and Bower, J. M., 1992. Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. J Neurophysiol. 67, 1222-1229.

    CAS  PubMed  Google Scholar 

  • Hasselmo, M. E., Linster, C., Patil, M., Ma, D. and Cekic, M., 1997. Noradrenergic suppres-sion of synaptic transmission may influence cortical signal-to-noise ratio. J Neurophysiol. 77, 3326-3339.

    CAS  PubMed  Google Scholar 

  • Hieble, J. P. and Ruffolo, Jr., R. R., 1996. Subclassification and nomenclature of alpha 1- and alpha 2-adrenoceptors. Prog Drug Res. 47, 81-130.

    CAS  PubMed  Google Scholar 

  • Hurley, L. M., Devilbiss, D. M. and Waterhouse, B. D., 2004. A matter of focus: mono-aminergic modulation of stimulus coding in mammalian sensory networks. Curr Opin Neurobiol. 14, 488-495.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi, Y. and Shindou, T., 1998. Noradrenergic excitation and inhibition of GABAergic cell types in rat frontal cortex. J Neurosci. 18, 6963-6976.

    CAS  PubMed  Google Scholar 

  • Kobayashi, M., Imamura, K., Sugai, T., Onoda, N., Yamamoto, M., Komai, S. and Watanabe, Y., 2000. Selective suppression of horizontal propagation in rat visual cortex by norepinephrine. Eur J Neurosci. 12, 264-272.

    Article  CAS  PubMed  Google Scholar 

  • Law-Tho, D., Crepel, F. and Hirsch, J. C., 1993. Noradrenaline decreases transmission of NMDA- and non-NMDA-receptor mediated monosynaptic EPSPs in rat prefrontal neu-rons in vitro. Eur J Neurosci. 5, 1494-1500.

    Article  CAS  PubMed  Google Scholar 

  • Lidow, M. S., Williams, G. V. and Goldman-Rakic, P. S., 1998. The cerebral cortex: a case for a common site of action of antipsychotics. Trends Pharmacol Sci. 19, 136-140.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W., Yuen, E. Y., Allen, P. B., Feng, J., Greengard, P. and Yan, Z., 2006. Adrenergic modulation of NMDA receptors in prefrontal cortex is differentially regulated by RGS proteins and spinophilin. Proc Natl Acad Sci U S A. 103, 18338-18343.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzon, N. M. and Foehring, R. C., 1992. Relationship between repetitive firing and after-hyperpolarizations in human neocortical neurons. J Neurophysiol. 67, 350-363.

    CAS  PubMed  Google Scholar 

  • Lorenzon, N. M. and Foehring, R. C., 1993. The ontogeny of repetitive firing and its modula-tion by norepinephrine in rat neocortical neurons. Brain Res Dev Brain Res. 73, 213-223.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, D. A., 1992. Neurotransmitter actions in the thalamus and cerebral cortex. J Clin Neurophysiol. 9, 212-223.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, D. A. and Wang, Z., 1991. Serotonin and noradrenaline excite GABAergic neu-rones of the guinea-pig and cat nucleus reticularis thalami. J Physiol. 442, 235-255.

    CAS  PubMed  Google Scholar 

  • Morilak, D. A., Fornal, C. A. and Jacobs, B. L., 1987. Effects of physiological manipulations on locus coeruleus neuronal activity in freely moving cats. III. Glucoregulatory challenge. Brain Res. 422, 32-39.

    Article  CAS  PubMed  Google Scholar 

  • Mouradian, R. D., Sessler, F. M. and Waterhouse, B. D., 1991. Noradrenergic potentiation of excitatory transmitter action in cerebrocortical slices: evidence for mediation by an alpha 1 receptor-linked second messenger pathway. Brain Res. 546, 83-95.

    Article  CAS  PubMed  Google Scholar 

  • Neuman, R. S., 1986. Suppression of penicillin-induced focal epileptiform activity by locus ceruleus stimulation: mediation by an alpha 1-adrenoceptor. Epilepsia. 27, 359-366.

    Article  CAS  PubMed  Google Scholar 

  • Pacak, K., Palkovits, M., Kopin, I. J. and Goldstein, D. S., 1995. Stress-induced norepineph-rine release in the hypothalamic paraventricular nucleus and pituitary-adrenocortical and sympathoadrenal activity: in vivo microdialysis studies. Front Neuroendocrinol.16, 89-150.

    Article  CAS  PubMed  Google Scholar 

  • Pralong, E. and Magistretti, P. J., 1994. Noradrenaline reduces synaptic responses in normal and tottering mouse entorhinal cortex via alpha 2 receptors. Neurosci Lett. 179, 145-148.

    Article  CAS  PubMed  Google Scholar 

  • Ramos, B. P. and Arnsten, A. F., 2007. Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther. 2007, 113(3):523-36.

    Article  CAS  PubMed  Google Scholar 

  • Rey E, Hernandez-iaz FJ, Abreu P, Alonso R, Tabares L. (2001) Dopamine induces intracellular Ca2 + signals mediated by alpha1B- adrenoceptors in rat pineal cells. Eur J Pharmacol 26; 430(1):9-17.

    Article  CAS  Google Scholar 

  • Sarter, M., Hasselmo, M. E., Bruno, J. P. and Givens, B., 2005. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Brain Res Rev. 48, 98-111.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, T. H., Rabinowitz, D., Unni, V., Kumar, V. S., Smetters, D. K., Tsiola, A. and Yuste, R., 1998. Networks of coactive neurons in developing layer 1. Neuron. 20, 541-552.

    Article  CAS  PubMed  Google Scholar 

  • Stanton, P. K., Mody, I., Zigmond, D., Sejnowski, T. and Heinemann, U., 1992. Noradrener-gic modulation of excitability in acute and chronic model epilepsies. Epilepsy Res Suppl. 8, 321-334.

    CAS  PubMed  Google Scholar 

  • Swaminath, G., Xiang, Y., Lee, T. W., Steenhuis, J., Parnot, C. and Kobilka, B. K., 2004. Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermedi-ate conformational states. J Biol Chem. 279, 686-691.

    Article  CAS  PubMed  Google Scholar 

  • Timmons, S. D., Geisert, E., Stewart, A. E., Lorenzon, N. M. and Foehring, R. C., 2004. alpha2-Adrenergic receptor-mediated modulation of calcium current in neocortical pyramidal neurons. Brain Res. 1014, 184-196.

    Article  CAS  PubMed  Google Scholar 

  • Valentino, R. J., Foote, S. L. and Page, M. E., 1993. The locus coeruleus as a site for integrat-ing corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann N Y Acad Sci. 697, 173-188.

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse, B. D. and Woodward, D. J., 1980. Interaction of norepinephrine with cerebrocor-tical activity evoked by stimulation of somatosensory afferent pathways in the rat. Exp Neurol. 67, 11-34.

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse, B. D., Moises, H. C. and Woodward, D. J., 1980. Noradrenergic modulation of somatosensory cortical neuronal responses to iontophoretically applied putative neuro-transmitters. Exp Neurol. 69, 30-49.

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse, B. D., Moises, H. C., Yeh, H. H., Geller, H. M. and Woodward, D. J., 1984. Comparison of norepinephrine- and benzodiazepine-induced augmentation of Purkinje cell responses to gamma-aminobutyric acid (GABA). J Pharmacol Exp Ther. 228, 257-267.

    CAS  PubMed  Google Scholar 

  • Waterhouse, B. D., Sessler, F. M., Cheng, J. T., Woodward, D. J., Azizi, S. A. and Moises, H. C., 1988. New evidence for a gating action of norepinephrine in central neuronal circuits of mammalian brain. Brain Res Bull. 21, 425-432.

    Article  CAS  PubMed  Google Scholar 

  • Xiang, Z., Huguenard, J. R. and Prince, D. A., 1998. Cholinergic switching within neocortical inhibitory networks. Science. 281, 985-988.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Atzori, M., Salgado, H., Tseng, KY. (2007). Regulation of Cortical Functions by the Central Noradrenergic System: Emerging Properties from an Old Friend. In: Tseng, KY., Atzori, M. (eds) Monoaminergic Modulation of Cortical Excitability. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72256-6_13

Download citation

Publish with us

Policies and ethics