Prefrontal Cortical Synaptic Plasticity: The Roles of Dopamine and Implication for Schizophrenia

  • Yukiori Goto
  • Satoru Otani

The prefrontal cortex (PFC) is central in mediating executive functions in goaldirected behavior, for which proper dopamine (DA) actions of information processing modulation is essential in this area. It is now evident that, as in the case of the hippocampus, the PFC undergoes neuronal adaptation processes in its networks with induction of synaptic plasticity such as long-term potentiation (LTP) and short-term potentiation (STP). A prominent characteristic of synaptic plasticity in the PFC is that its induction mechanisms involve DA as an essential modulatory molecule. As such, DA-dependent plastic changes occurring in PFC network have important roles for PFC-mediated cognitive functions. Nevertheless, little attempt has been made to characterize the nature of PFC neuronal adaptation by synaptic plasticity, given that the PFC is thought to be the area of temporary storage and manipulation of information, known as working memory. However, accumulating evidences now indicate that the functions of the PFC cannot be fully explained just as the region of an online representation and handling of information. Importance of DA-dependent synaptic plasticity is further encouraged by possible disruption of synaptic plasticity mechanism in the PFC in psychiatric disorders such as schizophrenia, drug addiction, and depression.

In this chapter, we describe the underlying cellular mechanisms of DA action on synaptic plasticity induction in the PFC, and possible roles of PFC synaptic plasticity in executive functions as well as its disruptions in the pathophysiology of schizophrenia.


Prefrontal Cortex Synaptic Plasticity Ventral Tegmental Area Tetanic Stimulation Trace Fear Conditioning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abi-Dargham, A., Mawlawi, O., Lombardo, I., Gil, R., Martinez, D., Huang, Y., Hwang, D. R., Keilp, J., Kochan, L., Van Heertum, R., Gorman, J. M., and Laruelle, M. (2002). Pre-frontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22, 3708-19.PubMedGoogle Scholar
  2. Au-Young, S. M., Shen, H., and Yang, C. R. (1999). Medial prefrontal cortical output neurons to the ventral tegmental area (VTA) and their responses to burst-patterned stimulation of the VTA: neuroanatomical and in vivo electrophysiological analyses. Synapse 34, 245-55.CrossRefPubMedGoogle Scholar
  3. Baldwin, A. E., Sadeghian, K., and Kelley, A. E. (2002). Appetitive instrumental learning requires coincident activation of NMDA and dopamine D1 receptors within the medial prefrontal cortex. J Neurosci 22, 1063-71.PubMedGoogle Scholar
  4. Bear, M. F., and Malenka, R. C. (1994). Synaptic plasticity: LTP and LTD. Curr Opin Neuro-biol 4, 389-99.CrossRefGoogle Scholar
  5. Benes, F. M. (1999). Evidence for altered trisynaptic circuitry in schizophrenic hippocampus. Biol Psychiatry 46, 589-99.CrossRefPubMedGoogle Scholar
  6. Birrell, J. M., and Brown, V. J. (2000). Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20, 4320-4.PubMedGoogle Scholar
  7. Callicott, J. H., Mattay, V. S., Verchinski, B. A., Marenco, S., Egan, M. F., and Weinberger, D. R. (2003). Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry 160, 2209-15.CrossRefPubMedGoogle Scholar
  8. Carr, D. B., and Sesack, S. R. (2000). Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20, 3864-73.PubMedGoogle Scholar
  9. Egerton, A., Reid, L., McKerchar, C. E., Morris, B. J., and Pratt, J. A. (2005). Impairment in perceptual attentional set-shifting following PCP administration: a rodent model of set-shifting deficits in schizophrenia. Psychopharmacology (Berl) 179, 77-84.CrossRefGoogle Scholar
  10. Fuster, J. M., Bodner, M., and Kroger, J. K. (2000). Cross-modal and cross-temporal associa-tion in neurons of frontal cortex. Nature 405, 347-51.CrossRefPubMedGoogle Scholar
  11. Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron 14, 477-85.CrossRefPubMedGoogle Scholar
  12. Goldman-Rakic, P. S., and Selemon, L. D. (1997). Functional and anatomical aspects of pre-frontal pathology in schizophrenia. Schizophr Bull 23, 437-58.PubMedGoogle Scholar
  13. Gorelova, N., Seamans, J. K., and Yang, C. R. (2002). Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. J Neurophysiol 88, 3150-66.CrossRefPubMedGoogle Scholar
  14. Goto, Y., and Grace, A. A. (2006). Alterations in medial prefrontal cortical activity and plas-ticity in rats with disruption of cortical development. Biol Psychiatry, 60, 1259-67.CrossRefPubMedGoogle Scholar
  15. Greengard, P., Allen, P. B., and Nairn, A. C. (1999). Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23, 435-47.CrossRefPubMedGoogle Scholar
  16. Gurden, H., Takita, M., and Jay, T. M. (2000). Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal cortex syn-apses in vivo. J Neurosci 20, RC106.PubMedGoogle Scholar
  17. Gurden, H., Tassin, J.-P., and Jay, T. M. (1999). Integrity of the mesocortical dopaminergic system is necessary for complete expression of in vivo hippocampal-prefrontal cortex long-term potentiation. Neuroscience 94, 1019-27.CrossRefPubMedGoogle Scholar
  18. Harrison, P. J., and Weinberger, D. R. (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10, 40-68.CrossRefPubMedGoogle Scholar
  19. Haut, M. W., Cahill, J., Cutlip, W. D., Stevenson, J. M., Makela, E. H., and Bloomfield, S. M. (1996). On the nature of Wisconsin Card Sorting Test performance in schizophrenia. Psy-chiatry Res 65, 15-22.CrossRefGoogle Scholar
  20. Heckers, S., Rauch, S. L., Goff, D., Savage, C. R., Schacter, D. L., Fischman, A. J., and Alpert, N. M. (1998). Impaired recruitment of the hippocampus during conscious recollec-tion in schizophrenia. Nat Neurosci 1, 318-23.CrossRefPubMedGoogle Scholar
  21. Herry, C., and Garcia, R. (2002). Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. J Neurosci 22, 577-83.PubMedGoogle Scholar
  22. Huang, Y. Y., Simpson, E., Kellendonk, C., and Kandel, E. R. (2004). Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors. Proc Natl Acad Sci U S A 101, 3236-41.CrossRefPubMedGoogle Scholar
  23. Javitt, D. C., and Zukin, S. R. (1991). Recent advances in the phencyclidine model of schizo-phrenia. Am J Psychiatry 148, 1301-8.PubMedGoogle Scholar
  24. Jay, T. M., and Witter, M. P. (1991). Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 313, 574-86.CrossRefPubMedGoogle Scholar
  25. Jentsch, J. D., and Roth, R. H. (1999). The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsy-chopharmacology 20, 201-25.CrossRefGoogle Scholar
  26. Klemm, W. R. (1976). Physiological and behavioral significance of hippocampal rhythmic, slow activity (“theta rhythm”). Prog Neurobiol 6, 23-47.CrossRefPubMedGoogle Scholar
  27. Knable, M. B., and Weinberger, D. R. (1997). Dopamine, the prefrontal cortex and schizo-phrenia. J Psychopharmacol 11, 123-31.CrossRefPubMedGoogle Scholar
  28. Laruelle, M., Kegeles, L. S., and Abi-Dargham, A. (2003). Glutamate, dopamine, and schizo-phrenia: from pathophysiology to treatment. Ann N Y Acad Sci 1003, 138-58.CrossRefPubMedGoogle Scholar
  29. Levitt, J. B., Lewis, D. A., Yoshioka, T., and Lund, J. S. (1993). Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46). J Comp Neurol 338, 360-76.CrossRefPubMedGoogle Scholar
  30. Lewis, D. A., Campbell, M. J., Foote, S. L., Goldstein, M., and Morrison, J. H. (1987). The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is wide-spread but regionally specific. J Neurosci 7, 279-90.PubMedGoogle Scholar
  31. Lidow, M. S., Goldman-Rakic, P. S., Gallager, D. W., and Rakic, P. (1991). Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative audioradiographic analysis using [3H]raclopride, [3H]spiperone, and [3H]SCH23390. Neuroscience 40, 657-71.CrossRefPubMedGoogle Scholar
  32. Lidow, M. S., Williams, G. V., and Goldman-Rakic, P. S. (1998). The cerebral cortex: a case for a common site of action of antipsychotics. Trends Pharmacol Sci 19, 136-40.CrossRefPubMedGoogle Scholar
  33. Manoach, D. S. (2003). Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr Res 60, 285-98.CrossRefPubMedGoogle Scholar
  34. Matsuda, Y., Marzo, A., and Otani, S. (2006). The presence of background dopamine signal converts long-term synaptic depression to potentiation in rat prefrontal cortex. J Neurosci 26, 4803-10.CrossRefPubMedGoogle Scholar
  35. Meyer-Lindenberg, A. S., Olsen, R. K., Kohn, P. D., Brown, T., Egan, M. F., Weinberger, D. R., and Berman, K. F. (2005). Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry 62, 379-86.CrossRefPubMedGoogle Scholar
  36. Miller, E. K., and Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24, 167-202.CrossRefPubMedGoogle Scholar
  37. Mulder, A. B., Nordquist, R., Orgut, O., and Pennartz, C. M. (2000). Plasticity of neuronal firing in deep layers of the medial prefrontal cortex in rats engaged in operant condition-ing. Prog Brain Res 126, 287-301.CrossRefPubMedGoogle Scholar
  38. Murase, S., Grenhoff, J., Chouvet, G., Gonon, F. G., and Svensson, T. H. (1993). Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo. Neurosci Lett 157, 53-6.CrossRefPubMedGoogle Scholar
  39. Okubo, Y., Suhara, T., Suzuki, K., Kobayashi, K., Inoue, O., Terasaki, O., Someya, Y., Sassa, T., Sudo, Y., Matsushima, E., Iyo, M., Tateno, Y., and Toru, M. (1997). Decreased pre-frontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385, 634-6.CrossRefPubMedGoogle Scholar
  40. Otani, S., Auclair, N., Desce, J.-M., Roisin, M.-P., and Crepel, F. (1999). Dopamine receptors and groups I and II mGluRs cooperate for long-term depression induction in rat pre-frontal cortex through converging postsynaptic activation of MAP kinases. J Neurosci 19, 9788-02.PubMedGoogle Scholar
  41. Otani, S., Blond, O., Desce, J. M., and Crepel, F. (1998). Dopamine facilitates long-term depression of glutamatergic transmission in rat prefrontal cortex. Neuroscience 85, 669-76.CrossRefPubMedGoogle Scholar
  42. Runyan, J. D., Moore, A. N., and Dash, P. K. (2004). A role for prefrontal cortex in memory storage for trace fear conditioning. J Neurosci 24, 1288-95.CrossRefPubMedGoogle Scholar
  43. Seamans, J. K., Durstewitz, D., Christie, B. R., Stevens, C. F., and Sejnowski, T. J. (2001). Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci U S A 98, 301-6.CrossRefPubMedGoogle Scholar
  44. Simon, B., Knuckley, B., Churchwell, J., and Powell, D. A. (2005). Post-training lesions of the medial prefrontal cortex interfere with subsequent performance of trace eyeblink condi-tioning. J Neurosci 25, 10740-6.CrossRefPubMedGoogle Scholar
  45. Takehara-Nishiuchi, K., Nakao, K., Kawahara, S., Matsuki, N., and Kirino, Y. (2006). Sys-tems consolidation requires postlearning activation of NMDA receptors in the medial pre-frontal cortex in trace eyeblink conditioning. J Neurosci 26, 5049-58.CrossRefPubMedGoogle Scholar
  46. Takita, M., Izaki, Y., Jay, T. M., Kaneko, H., and Suzuki, S. S. (1999). Induction of stable long-term depression in vivo in the hippocampal-prefrontal cortex pathway. Eur J Neuro-sci 11, 4145-8.CrossRefGoogle Scholar
  47. Tallon-Baudry, C., Bertrand, O., Peronnet, F., and Pernier, J. (1998). Induced gamma-band activity during the delay of a visual short-term memory task in humans. J Neurosci 18, 4244-54.PubMedGoogle Scholar
  48. Thierry, A. M., Blanc, G., Sobel, A., Stinus, L., and Golwinski, J. (1973). Dopaminergic terminals in the rat cortex. Science 182, 499-501.CrossRefPubMedGoogle Scholar
  49. Trantham-Davidson, H., Neely, L. C., Lavin, A., and Seamans, J. K. (2004). Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in pre-frontal cortex. J Neurosci 24, 10652-9.CrossRefPubMedGoogle Scholar
  50. Tseng, K. Y., and O’Donnell, P. (2004). Dopamine-glutamate interactions controlling prefron-tal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 24, 5131-9.CrossRefPubMedGoogle Scholar
  51. Tseng, K. Y., and O’Donnell, P. (2007). Dopamine modulation of prefrontal cortical interneu-rons changes during adolescence. Cereb Cortex 17, 1235-40.CrossRefPubMedGoogle Scholar
  52. Wallis, J. D., Anderson, K. C., and Miller, E. K. (2001). Single neurons in prefrontal cortex encode abstract rules. Nature 411, 953-6.CrossRefPubMedGoogle Scholar
  53. Wang, Y., and Goldman-Rakic, P. S. (2004). D2 receptor regulation of synaptic burst firing in prefrontal cortical pyramidal neurons. Proc Natl Acad Sci U S A 101, 5093-8.CrossRefPubMedGoogle Scholar
  54. Weinberger, D. R., Aloia, M. S., Goldberg, T. E., and Berman, K. F. (1994). The frontal lobes and schizophrenia. J Neuropsychiatry Clin Neurosci 6, 419-27.PubMedGoogle Scholar
  55. Weiner, D. M., Levey, A. I., Sunahara, R. K., Niznik, H. B., O’Dowd, B. F., Seeman, P., and Brann, M. R. (1991). D1 and D2 dopamine receptor mRNA in rat brain. Proc Natl Acad Sci U S A 88, 1859-63.CrossRefPubMedGoogle Scholar
  56. Williams, G. V., and Castner, S. A. (2006). Under the curve: critical issues for elucidating D1 receptor function in working memory. Neuroscience 139, 263-76.CrossRefPubMedGoogle Scholar
  57. Yang, C. R., and Chen, L. (2005). Targeting prefrontal cortical dopamine D1 and N-methyl-D-aspartate receptor interactions in schizophrenia treatment. Neuroscientist 11, 452-70.CrossRefPubMedGoogle Scholar
  58. Yang, C. R., and Seamans, J. K. (1996). Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J Neurosci 16, 1922-35.PubMedGoogle Scholar
  59. Yerkes, R. M., and Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol 18, 459-82.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yukiori Goto
    • 1
  • Satoru Otani
    • 2
  1. 1.Department of PsychiatryMcGill UniversityMontrealCanada
  2. 2.Department of NeurobiologyUniversity of Paris VI-CNRSFrance

Personalised recommendations