Novel Functions for Mucosal SIgA

  • Armelle Phalipon
  • Blaise Corthésy

An important activity of mucosal surfaces is the production of the special type of antibodies referred to as secretory IgA (SIgA) (Lamm, 1997). SIgA is produced predominantly as a dimer complexed with the J-chain and the secretory component (SC). SC is the ectodomain of the polymeric immunoglobulin receptor (pIgR) that either remains bound to polymeric IgA (pIgA) following transcytosis and proteolytic cleavage (Mostov et al., 1980) or is released alone, (i.e., free SC, in mucosal secretions) (Poger and Lamm, 1974) (see Chapter 3). The classical view is that SIgA serves as the first line of defense against microorganisms by agglutinating potential invaders and facilitating their clearance by peristaltic and mucociliary movements, a mechanism called immune exclusion (Mestecky et al., 1999).


Human Milk Mucosal Immune Response Secretory Component Secretory Immunoglobulin SIgA Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anjuère, F., Luci, C., Lebens, M., Rousseau, D., Hervouet, C., Milon, G., Holmgren, J., Ardavin, C., and Czerkinsky, C. (2004). In vivo adjuvant-induced mobilization and maturation of gut dendritic cells after oral administration of cholera toxin. J. Immunol. 173:5103–5111.PubMedGoogle Scholar
  2. Biesbrock, A. R., Reddy, M. S., and Levine, M. J. (1991). Interaction of a salivary mucin-secretory immunoglobulin A complex with mucosal pathogens. Infect. Immun. 59:3492–3497.PubMedGoogle Scholar
  3. Bollinger, R. R., Everett, M. L., Palestrant, D., Love, S. D., Lin, S. S., and Parker, W. (2003). Human secretory immunoglobulin A may contribute to biofilm formation in the gut. Immunology 109:580–587.CrossRefPubMedGoogle Scholar
  4. Bollinger, R. R., Everett, M. L., Wahl, S. D., Lee, Y. H., Orndorff, P. E., and Parker, W. (2006). Secretory IgA and mucin-mediated biofilm formation by environmental strains of Escherichia coli: role of type 1 pili. Mol. Immunol. 43:378–387.CrossRefPubMedGoogle Scholar
  5. Bomsel, M., Heyman, M., Hocini, H., Lagaye, S., Belec, L., Dupont, C., and Desgranges, C. (1998). Intracellular neutralization of HIV transcytosis across tight epithelial barriers by anti-HIV envelope protein dIgA or IgM. Immunity 19:277–287.CrossRefGoogle Scholar
  6. Boren, T., Falk, P., Roth, K. A., Larson, G., and Normark, S. (1993). Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262:1892–1895.CrossRefPubMedGoogle Scholar
  7. Brière, F., Paliard, X., and De Vries, J. E. (1988). Induction of the receptor for the Fc portion of IgA by secretory IgA on human T cell lines and T cell clones. Eur. J. Immunol. 18:445–450.CrossRefPubMedGoogle Scholar
  8. Brock, S. C., McGraw, P. A., Wright, P. F., Crowe, J. E., Jr. (2002). The human polymeric immunoglobulin receptor facilitates invasion of epithelial cells by Streptococcus pneumoniae in a strain-specific and cell type-specific manner. Infect. Immun. 70:5091–5095.CrossRefPubMedGoogle Scholar
  9. Cebra, J. J. (1999). Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 69:1046S–1051S.PubMedGoogle Scholar
  10. Chintalacharuvu, K. R., and Morrison, S. L. (1997). Production of secretory immunoglobulin A by a single mammalian cell. Proc. Natl. Acad. Sci. USA 94:6364–6368.CrossRefPubMedGoogle Scholar
  11. Corthésy, B., Benureau, Y., Perrier, C., Fourgeux, C., Parez, N., Greenberg, H., and Schwartz-Cornil, I. (2006). Rotavirus anti-VP6 secretory IgA contributes to protection via intracellular neutralization but not via immune exclusion. J. Virol. 80:10, 692–10, 699.Google Scholar
  12. Corthésy, B., Kaufmann, M., Phalipon, A., Peitsch, M., Neutra, M. R., and Kraehenbuhl, J. P. (1996). A pathogen-specific epitope inserted into recombinant secretory immunoglobulin A is immunogenic by the oral route. J. Biol. Chem. 271:33, 670–33, 677.Google Scholar
  13. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., and Lappin-Scott, H. M. (1995). Microbial biofilms. Annu. Rev. Microbiol. 49:711–745.CrossRefPubMedGoogle Scholar
  14. Crottet, P., and Corthésy, B. (1998). Secretory component delays the conversion of secretory IgA into antigen-binding competent F(ab’) 2: A possible implication for mucosal defense. J. Immunol. 161:5445–5453.PubMedGoogle Scholar
  15. Cukrowska, B., Lodinova-Zadnikova, R., Enders, C., Sonnenborn, U., Schulze, J., and Tlaskalova-Hogenova, H. (2002). Specific proliferative and antibody responses of premature infants to intestinal colonization with nonpathogenic probiotic E. coli strain Nissle 1917. Scand. J. Immunol. 55:204–209.CrossRefPubMedGoogle Scholar
  16. Dallas, S. D., and Rolfe, R. D. (1998) Binding of Clostridium difficile toxin A to human milk secretory component. J. Med. Microbiol. 47:879–888.CrossRefPubMedGoogle Scholar
  17. Eberl, G. (2005). Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nat. Rev. Immunol. 5:413–420.CrossRefPubMedGoogle Scholar
  18. Elm, C., Braathen, R., Bergmann, S., Frank, R., Vaerman, J. P., Kaetzel, C. S., Chhatwal, G. S., Johansen, F. E., and Hammerschmidt, S. (2004). Ectodomains 3 and 4 of human polymeric immunoglobulin receptor (hpIgR) mediate invasion of Streptococcus pneumoniae into the epithelium. J. Biol. Chem. 279:6296–6304.CrossRefPubMedGoogle Scholar
  19. Fagarasan, S., Muramatsu, M., Suzuki, K., Nagaoka, H., Hiai, H., and Honjo, T. (2002). Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298:1424–1427.CrossRefPubMedGoogle Scholar
  20. Fagarasan, S., and Honjo, T. (2004). Regulation of IgA synthesis at mucosal surfaces. Curr. Opin. Immunol. 16:277–283.CrossRefPubMedGoogle Scholar
  21. Falk, P., Roth, K. A., Boren, T., Westblom, T. U., Gordon, J. I., and Normark, S. (1993). An in vitro adherence assay reveals that Helicobacter pylori exhibits cell lineage-specific tropism in the human gastric epithelium. Proc. Natl. Acad. Sci. USA 90:2035–2039.CrossRefPubMedGoogle Scholar
  22. Fang, H., Elina, T., Heikki, A., and Seppo, S. (2000). Modulation of humoral immune response through probiotic intake. FEMS Immunol. Med. Microbiol. 29:47–52.CrossRefPubMedGoogle Scholar
  23. Favre, L., Spertini, F., and Corthésy, B. (2005). Secretory IgA possesse intrinsic modulatory properties stimulating mucosal and systemic immune responses. J. Immunol. 175:2793–2800.PubMedGoogle Scholar
  24. Fernandez, M. I., Pedron, T., Tournebize, R., Olivo-Marin, J. C., Sansonetti, P. J., and Phalipon. (2003). A. Anti-inflammatory role for intracellular dimeric immunoglobulin a by neutralization of lipopolysaccharide in epithelial cells. Immunity 18:739–749.CrossRefPubMedGoogle Scholar
  25. Friman, V., Adlerberth, I., Connell, H., Svanborg, C., Hanson, L. A., and Wold, A. E. (1996). Decreased expression of mannose-specific adhesins by Escherichia coli in the colonic microflora of immunoglobulin A-deficient individuals. Infect. Immun. 64:2794–2798.PubMedGoogle Scholar
  26. Fujioka, H., Emancipator, S. N., Aikawa, M., Huang, D. S., Blatnik, F., Karban, T., DeFife, K., and Mazanec, M. B. (1998). Immunocytochemical colocalization of specific immunoglobulin A with sendai virus protein in infected polarized epithelium. J. Exp. Med. 188:1223–1229.CrossRefPubMedGoogle Scholar
  27. Fukushima, Y., Kawata, Y., Hara, H., Terada, A., and Mitsuoka, T. (1998). Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. Int. J. Food Microbiol. 42:39–44.CrossRefGoogle Scholar
  28. Geissmann, F., Launay, P., Pasquier, B., Lepelletier, Y., Leborgne, M., Lehuen, A., Brousse, N., and Monteiro, R. C. (2001). A subset of human dendritic cells expresses IgA Fc receptor (CD89), which mediates internalization and activation upon cross-linking by IgA complexes. J. Immunol. 166:346–352.PubMedGoogle Scholar
  29. Giugliano, L. G., Ribeiro, S. T., Vainstein, M. H., and Ulhoa, C. J. (1995). Free secretory component and lactoferrin of human milk inhibit the adhesion of enterotoxigenic Escherichia coli. J. Med. Microbiol. 42:3–9.CrossRefPubMedGoogle Scholar
  30. Gonnella, P. A., Chen, Y., Inobe, J., Komagata, Y., Quartulli, M., and Weiner, H. L. (1998). In situ immune response in gut-associated lymphoid tissue (GALT) following oral antigen in TCR-transgenic mice. J. Immunol. 160:4708–4718.PubMedGoogle Scholar
  31. Hammerschmidt, S., Talay, S. R., Brandtzaeg, P., and Chhatwal, G. S. (1997). SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol. Microbiol. 25:1113–1124.CrossRefPubMedGoogle Scholar
  32. Hammerschmidt, S., Tillig, M. P., Wolff, S., Vaerman, J. P., and Chhatwal, G. S. (2000). Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol. Microbiol. 36:726–736.CrossRefPubMedGoogle Scholar
  33. Heystek, H. C., Moulon, C., Woltman, A. M., Garonne, P., and van Kooten, C. (2002). Human immature dendritic cells efficiently bind and take up secretory IgA without the induction of maturation. J. Immunol. 168:102–107.PubMedGoogle Scholar
  34. Hooper, L. V., and Gordon, J. I. (2001). Commensal host-bacterial relationships in the gut. Science 292:1115–1118.CrossRefPubMedGoogle Scholar
  35. Huang, Y. T., Wright, A., Gao, X., Kulick, L., Yan, H., and Lamm, M. E. (2005). Intraepithelial cell neutralization of HIV-1 replication by IgA. J. Immunol. 174:4828–4835.PubMedGoogle Scholar
  36. Iwasaki, A., and Kelsall, B. L. (1999). Freshly isolated Peyer’s patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 190:229–239.CrossRefPubMedGoogle Scholar
  37. Jang, M. H., Kweon, M. N., Iwatani, K., Yamamoto, M., Terahara, K., Sasakawa, C., Suzuki, T., Nochi, T., Yokota, Y., Rennert, P. D., Hiroi, T., Tamagawa, H., Iijima, H., Kunisawa, J., Yuki, Y., and Kiyono, H. (2004). Intestinal villous M cells: An antigen entry site in the mucosal epithelium. Proc. Natl. Acad. Sci. USA 101:6110–6115.CrossRefPubMedGoogle Scholar
  38. Jenkins, S. L., Wang, J., Vazir, M., Vela, J., Sahagun, O., Gabbay, P., Hoang, L., Diaz, R. L., Aranda, R., and Martin, M. G. (2003). Role of passive and adaptive immunity in influencing enterocyte-specific gene expression. Am. J. Physiol:. Gastrointest. Liver Physiol. 285:G714–G725.Google Scholar
  39. Kaetzel, C. S. (2001). Polymeric Ig receptor: defender of the fort or Trojan horse? Curr. Biol. 11:R35–R38.CrossRefPubMedGoogle Scholar
  40. Kaetzel, C. S., Robinson, J. K., Chintalacharuvu, K. R., Vaerman, J. P., and Lamm, M. E. (1991). The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function for IgA. Proc. Natl. Acad. Sci. USA 88:8796–8800.CrossRefPubMedGoogle Scholar
  41. Kerr, M. A. (1990). The structure and function of human IgA. Biochem. J. 271:285–296.PubMedGoogle Scholar
  42. Kiyono, H., McGhee, J. R., Mosteller, L. M., Eldridge, J. H., Koopman, W. J., Kearney, J. F., and Michalek, S. M. (1982). Murine Peyer’s patch T cell clones. Characterization of antigen-specific helper T cells for immunoglobulin A responses. J. Exp. Med. 156:1115–1130.CrossRefPubMedGoogle Scholar
  43. Lamm, M. E. (1997). Interaction of antigens and antibodies at mucosal surfaces. Annu. Rev. Microbiol. 51:311–340.CrossRefPubMedGoogle Scholar
  44. Langley, R., Wines, B., Willoughby, N., Basu, I., Proft, T., and Fraser, J. D. (2005). The staphylococcal superantigen-like protein 7 binds IgA and complement C5 and inhibits IgA-Fc alpha RI binding and serum killing of bacteria. J. Immunol. 174:2926–2933.PubMedGoogle Scholar
  45. Liepke, C., Adermann, K., Raida, M., Magert, H. J., Forssmann, W. G., and Zucht, H. D. (2002). Human milk provides peptides highly stimulating the growth of bifidobacteria. Eur. J. Biochem. 269:712–718.CrossRefPubMedGoogle Scholar
  46. Lindh, E. (2005). Increased resistance of immunoglobulin A dimers to proteolytic degradation after binding of secretory component. J. Immunol. 114:284–286.Google Scholar
  47. Lorenz, R. G., and Newberry, R. D. (2004). Isolated lymphoid follicles can function as sites for induction of mucosal immune responses. Ann. NY Acad Sci. 1029:44–57.CrossRefPubMedGoogle Scholar
  48. Lu, L., Lamm, M. E., Li, H., Corthésy, B., and Zhang, J. R. (2003). The human polymeric immunoglobulin receptor binds to Streptococcus pneumoniae via domains 3 and 4. J. Biol. Chem. 278:48, 178–48, 187.Google Scholar
  49. Luo, R., Mann, B., Lewis, W. S., Rowe, A., Heath, R., Stewart, M. L., Hamburger, A. E., Sivakolundu, S., Lacy, E. R., Bjorkman, P. J., Tuomanen, E., and Kriwacki, R. W. (2005). Solution structure of choline binding protein A, the major adhesin of Streptococcus pneumoniae. EMBO J. 24:34–43.CrossRefPubMedGoogle Scholar
  50. Macpherson, A. J., Gatto, D., Sainsbury, E., Harriman, G. R., Hengartner, H., and Zinkernagel, R. M. (2000). A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288:2222–2226.CrossRefPubMedGoogle Scholar
  51. Macpherson, A. J., Hunziker, L., McCoy, K., and Lamarre, A. (2001). IgA responses in the intestinal mucosa against pathogenic and non-pathogenic microorganisms. Microbes Infect. 3:1021–1035.CrossRefPubMedGoogle Scholar
  52. Macpherson, A. J., and Uhr, T. (2004). Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:1662–1665.CrossRefPubMedGoogle Scholar
  53. Mantis, N. J., Cheung, M. C., Chintalacharuvu, K. R., Rey, J., Corthésy, B., and Neutra, M. R. (2002). Selective adherence of IgA to murine Peyer’s patch M cells: evidence for a novel IgA receptor. J. Immunol. 169:1844–1851.PubMedGoogle Scholar
  54. Mantis, N. J., Farrant, S. A., and Mehta, S. (2004). Oligosaccharide side chains on human secretory IgA serve as receptors for ricin. J. Immunol. 172:6838–6845.PubMedGoogle Scholar
  55. Marshall, L. J., Perks, B., Ferkol, T., and Shute, J. K. (2001). IL-8 released constitutively by primary bronchial epithelial cells in culture forms an inactive complex with secretory component. J. Immunol. 167:2816–2823.PubMedGoogle Scholar
  56. Mattu, T. S., Pleass, R. J., Willis, A. C., Kilian, M., Wormald, M. R., Lellouch, A. C., Rudd, P. M., Woof, J. M., and Dwek, R. A. (1998). The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fc alpha receptor interactions. J. Biol. Chem. 273:2260–2272.CrossRefPubMedGoogle Scholar
  57. Mazanec, M. B., Kaetzel, C. S., Lamm, M. E., Fletcher, D., and Nedrud, J. G. (1992). Intracellular neutralization of virus by immunoglobulin A antibodies. Proc. Natl. Acad. Sci. USA 89:6901–6905.CrossRefPubMedGoogle Scholar
  58. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O., and Kasper, D. L. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118.CrossRefPubMedGoogle Scholar
  59. Mellman, I., and Steinman, R. M. (2001). Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258.CrossRefPubMedGoogle Scholar
  60. Mestecky, J., Russell, M. W., and Elson, C. O. (1999). Intestinal IgA: Novel views on its function in the defence of the largest mucosal surface. Gut 44:2–5.PubMedGoogle Scholar
  61. Mostov, K. E., Kraehenbuhl, J. P., and Blobel, G. (1980). Receptor-mediated transcellular transport of immunoglobulin: synthesis of secretory component as multiple and larger transmembrane forms. Proc. Natl. Acad. Sci. USA 77:7257–7261.CrossRefPubMedGoogle Scholar
  62. Newburg, D. S. (1999). Human milk glycoconjugates that inhibit pathogens. Curr. Med. Chem. 6:117–127.PubMedGoogle Scholar
  63. Niess, J. H., Brand, S., Gu, X., Landsman, L., Jung, S., McCormick, B. A., Vyas, J. M., Boes, M., Ploegh, H. L., Fox, J. G., Littman, D. R., and Reinecker, H. C. (2005). CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–258.CrossRefPubMedGoogle Scholar
  64. Owen, R. L. (1999). Uptake and transport of intestinal macromolecules and microorganisms by M cells in Peyer’s patches: A personal and historical perspective. Semin. Immunol. 11:157–163.CrossRefPubMedGoogle Scholar
  65. Palestrant, D., Holzknecht, Z. E., Collins, B. H., Parker, W., Miller, S. E., and Bollinger, R. R. (2004). Microbial biofilms in the gut: visualization by electron microscopy and by acridine orange staining. Ultrastruct. Pathol. 28:23–27.PubMedGoogle Scholar
  66. Pasquier, B., Launay, P., Kanamaru, Y., Moura, I. C., Pfirsch, S., Ruffie, C., Henin, D., Benhamou, M., Pretolani, M., Blank, U., and Monteiro, R. C. (2005). Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM. Immunity 22:31–42.PubMedGoogle Scholar
  67. Perrier, C., Sprenger, N., and Corthésy, B. (2006). Glycans on secretory component participate in innate protection against mucosal pathogens. J. Biol. Chem. 281:14, 280–14, 287.Google Scholar
  68. Phalipon, A., Cardona, A., Kraehenbuhl, J. P., Edelman, L., Sansonetti, P. J., and Corthésy, B. (2002). Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17:107–115.CrossRefPubMedGoogle Scholar
  69. Phalipon, A., and Corthésy, B. (2003). Novel functions of the polymeric Ig receptor: well beyond transport of immunoglobulins. Trends Immunol. 24:55–58.CrossRefPubMedGoogle Scholar
  70. Poger, M. E., and Lamm, M. E. (1974). Localization of free and bound secretory component in human intestinal epithelial cells. A model for the assembly of secretory IgA. J. Exp. Med. 139:629–642.CrossRefPubMedGoogle Scholar
  71. Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., Granucci, F., Kraehenbuhl, J. P., and Ricciardi-Castagnoli, P. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2:361–367.CrossRefPubMedGoogle Scholar
  72. Rey, J., Garin, N., Spertini, F., and Corthésy, B. (2004). Targeting of secretory IgA to Peyer’s patch dendritic and T cells after transport by intestinal M cells. J. Immunol. 172:3026–3033.PubMedGoogle Scholar
  73. Rhee, K. J., Sethupathi, P., Driks, A., Lanning, D. K., and Knight, K. L. (2004). Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J. Immunol. 172:1118–1124.PubMedGoogle Scholar
  74. Rimoldi, M., Chieppa, M., Salucci, V., Avogadri, F., Sonzogni, A., Sampietro, G. M., Nespoli, A., Viale, G., Allavena, P., and Rescigno, M. (2005). Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 6:507–514.CrossRefPubMedGoogle Scholar
  75. Robinson, J. K., Blanchard, T. G., Levine, A. D., Emancipator, S. N., and Lamm, M. E. (2001). A mucosal IgA-mediated excretory immune system in vivo. J. Immunol. 166:3688–3692.PubMedGoogle Scholar
  76. Rosenow, C., Ryan, P., Weiser, J. N., Johnson, S., Fontan, P., Ortqvist, A., and Masure, H. R. (1997). Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol. 25:819–829.CrossRefPubMedGoogle Scholar
  77. Roy, M. J., and Varvayanis, M. (1987). Development of dome epithelium in gut-associated lymphoid tissues: association of IgA with M cells. Cell Tissue Res. 248:645–651.CrossRefPubMedGoogle Scholar
  78. Royle, L., Roos, A., Harvey, D. J., Wormald, M. R., van Gijlswijk-Janssen, D., el-Redwan, R. M., Wilson, I. A., Daha, M. R., Dwek, R. A., and Rudd, P. M. (2003). Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J. Biol. Chem. 278:20, 140–20, 153.Google Scholar
  79. Rudd, P. M., Elliott, T., Cresswell, P., Wilson, I. A., and Dwek, R. A. (2001). Glycosylation and the immune system. Science 291:2370–2376.CrossRefPubMedGoogle Scholar
  80. Russell, M. W., Reinholdt, J., and Kilian, M. (1989). Anti-inflammatory activity of human IgA antibodies and their Fab alpha fragments: Inhibition of IgG-mediated complement activation. Eur. J. Immunol. 19:2243–2249.CrossRefPubMedGoogle Scholar
  81. Saltzman, W. M., Radomsky, M. L., Whaley, K. J., and Cone, R. A. (1994). Antibody diffusion in human cervical mucus. Biophys. J. 66:508–515.CrossRefPubMedGoogle Scholar
  82. Sandor, M., Waldschmidt, T. J., Williams, K. R., and Lynch, R. G. (1990). IgA-induced avidity maturation of IgA Fc receptors on murine T lymphocytes. J. Immunol. 144:4562–4570.PubMedGoogle Scholar
  83. Schneeman, T. A., Bruno, M. E., Schjerven, H., Johansen, F. E., Chady, L., and Kaetzel, C. S. (2005). Regulation of the polymeric Ig receptor by signaling through TLRs 3 and 4: Linking innate and adaptive immune responses. J. Immunol. 175:376–384.PubMedGoogle Scholar
  84. Schroten, H., Stapper, C., Plogmann, R., Kohler, H., Hacker, J., and Hanisch, F. G. (1998). Fab-independent antiadhesion effects of secretory immunoglobulin A on S-fimbriated Escherichia coli are mediated by sialyloligosaccharides. Infect. Immun. 66:3971–3973.PubMedGoogle Scholar
  85. Shroff, K. E., Meslin, K., and Cebra, J. J. (1995). Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect. Immun. 63:3904–3913.PubMedGoogle Scholar
  86. Stoel, M., Jiang, H. Q., van Diemen, C. C., Bun, J. C., Dammers, P. M., Thurnheer, M. C., Kroese, F. G., Cebra, J. J., and Bos, N. A. (2005). Restricted IgA repertoire in both B-1 and B-2 cell-derived gut plasmablasts. J. Immunol. 174:1046–1054.PubMedGoogle Scholar
  87. Suzuki, K., Meek, B., Doi, Y., Muramatsu, M., Chiba, T., Honjo, T., and Fagarasan, S. (2004). Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl. Acad. Sci. USA 101:1981–1986.CrossRefPubMedGoogle Scholar
  88. Suzuki, K., Oida, T., Hamada, H., Hitotsumatsu, O., Watanabe, M., Hibi, T., Yamamoto, H., Kubota, E., Kaminogawa, S., and Ishikawa, H. (2000). Gut cryptopatches: direct evidence of extrathymic anatomical sites for intestinal T lymphopoiesis. Immunity 13:691–702.CrossRefPubMedGoogle Scholar
  89. Tejada-Simon, M. V., Lee, J., Ustunol, Z., and Pestka, J. J. (1999). Ingestion of yogurt containing Lactobacillus acidophilus and Bifidobacterium to potentiate immunoglobulin A responses to cholera toxin in mice. J. Dairy Sci. 82:649–660.CrossRefPubMedGoogle Scholar
  90. Umesaki, Y., and Setoyama, H. (2000). Structure of the intestinal flora responsible for development of the gut immune system in a rodent model. Microbes Infect. 2:1343–1351.CrossRefPubMedGoogle Scholar
  91. Underdown, B. J., DeRose, J., Koczekan, K., Socken, D., and Weicker, J. (1977). Isolation of human secretory component by affinity chromatography on IgM-sepharose. Immunochemistry 14:111–118.CrossRefPubMedGoogle Scholar
  92. van der Waaij, L. A., Limburg, P. C., Mesander, G., and van der Waaij, D. (1996). In vivo IgA coating of anaerobic bacteria in human faeces. Gut 38:348–354.CrossRefPubMedGoogle Scholar
  93. Weltzin, R., Lucia-Jandris, P., Michetti, P., Fields, B. N., Kraehenbuhl, J. P., and Neutra, M. R. (1989). Binding and transepithelial transport of immunoglobulins by intestinal M cells: Demonstration using monoclonal IgA antibodies against enteric viral proteins. J. Cell. Biol. 108:1673–1685.CrossRefPubMedGoogle Scholar
  94. Williamson, E., Bilsborough, J. M., and Viney, J. L. (2002). Regulation of mucosal dendritic cell function by receptor activator of NF-kappa B (RANK)/RANK ligand interactions: impact on tolerance induction. J. Immunol. 169:3606–3612.PubMedGoogle Scholar
  95. Wold, A. E., Mestecky, J., Tomana, M., Kobata, A., Ohbayashi, H., Endo, T., and Eden, C. S. (1990). Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. Infect. Immun. 58:3073–3077.PubMedGoogle Scholar
  96. Wu, H. Y., and Weiner, H. L. (2003). Oral tolerance. Immunol. Res. 28:265–284.CrossRefPubMedGoogle Scholar
  97. Yoshida, M., Claypool, S. M., Wagner, J. S., Mizoguchi, E., Mizoguchi, A., Roopenian, D. C., Lencer, W. I., and Blumberg, R. S. (2004). Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20:769–783.CrossRefPubMedGoogle Scholar
  98. Zhang, J. R., Mostov, K. E., Lamm, M. E., Nanno, M., Shimida, S., Ohwaki, M., and Tuomanen, E. (2000). The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102:827–837.CrossRefPubMedGoogle Scholar
  99. Zhou, F, Kraehenbuhl, J. P., and Neutra, M. R. (1995). Mucosal IgA response to rectally administered antigen formulated in IgA-coated liposomes. Vaccine 13:637–644.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Armelle Phalipon
    • 1
  • Blaise Corthésy
    • 2
  1. 1.Laboratoire de Pathogénie Microbienne MoléculaireInstitut PasteurFrance
  2. 2.Laboratoire de Recherche et Développement, Service d'Immunologie et d'AllerCentre Hospitalier Universitaire VaudoisSwitzerland

Personalised recommendations