Advertisement

Immunoglobulin A (IgA) is, by far, the most abundant immunoglobulin produced in humans and is also the most heterogeneous (Kerr, 1990; Woof and Mestecky, 2005) (see Chapter 1). Human serum IgA, produced by plasma cells in the bone marrow, lymph nodes, and spleen, is mainly monomeric (mIgA) and constitutes ~15–20%of the total serum Ig pool. However, IgA predominates at the mucosa, as 80–90%of mucosal plasma cells produce this isotype (Brandtzaeg et al., 1999). In addition to IgA, mucosal plasma cells also express a small polypeptide called the joining chain (J-chain) that directs the assembly of dimers and larger polymers [collectively called polymeric IgA (pIgA)] (Johansen et al., 2000).

Keywords

IgAN Patient Secretory Component Aggressive Periodontitis Human Mesangial Cell Leukocyte Receptor Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abi-Rached, L., and Parham, P. (2005). Natural selection drives recurrent formation of activating killer cell immunoglobulin-like receptor and Ly49 from inhibitory homologues. J Exp. Med. 201:1319–1332.PubMedCrossRefGoogle Scholar
  2. Bakema, J. E., de Haij, S., den Hartog-Jager, C. F., Bakker, J., Vidarsson, G., van Egmond, M., van de Winkel, J. G., and Leusen, J. H. (2006). Signaling through mutants of the IgA receptor CD89 and consequences for Fc receptor v-chain interaction. J. Immunol. 176:3603–3610.PubMedGoogle Scholar
  3. Bracke, M., Lammers, J. W., Coffer, P. J., and Koenderman, L. (2001). Cytokine-induced inside-out activation of FcJR (CD89) is mediated by a single serine residue (S263) in the intracellular domain of the receptor. Blood 97:3478–3483.PubMedCrossRefGoogle Scholar
  4. Bracke, M., Nijhuis, E., Lammers, J. W., Coffer, P. J., and Koenderman, L. (2000). A critical role for PI 3-kinase in cytokine-induced Fc -receptor activation. Blood 95:2037–2043.PubMedGoogle Scholar
  5. Brandtzaeg, P., Farstad, I. N., Johansen, F. E., Morton, H. C., Norderhaug, I. N., and Yamanaka, T. (1999). The B-cell system of human mucosae and exocrine glands. Immunol. Rev. 171:45–87.PubMedCrossRefGoogle Scholar
  6. Conley, M. E., and Delacroix, D. L. (1987). Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann. Intern. Med. 106:892–899.PubMedGoogle Scholar
  7. Dechant, M., Vidarsson, G., Stockmeyer, B., Repp, R., Glennie, M. J., Gramatzki, M., van de Winkel, J. G., and Valerius, T. (2002). Chimeric IgA antibodies against HLA class II effectively trigger lymphoma cell killing. Blood 100:4574–4580.PubMedCrossRefGoogle Scholar
  8. de Wit, T. P., Morton, H. C., Capel, P. J., and van de Winkel, J. G. (1995). Structure of the gene for the human myeloid IgA Fc receptor (CD89). J. Immunol. 155:1203–1209. Ding, Y., Xu, G., Yang, M., Yao, M., Gao, G. F., Wang, L., Zhang, W., and Rao, Z. (2003). Crystal structure of the ectodomain of human FcuRI. J. Biol. Chem. 278:27, 966–27, 970.Google Scholar
  9. Feng, J., Garrity, D., Call, M. E., Moffett, H., and Wucherpfennig, K. W. (2005). Convergence on a distinctive assembly mechanism by unrelated families of activating immune receptors. Immunity 22:427–438.PubMedCrossRefGoogle Scholar
  10. Geissmann, F., Launay, P., Pasquier, B., Lepelletier, Y., Leborgne, M., Lehuen, A., Brousse, N., and Monteiro, R. C. (2000). A subset of human dendritic cells expresses IgA Fc receptor (CD89), which mediates internalization and activation upon cross-linking by IgA complexes. J. Immunol. 166:346–352.Google Scholar
  11. Gomez-Guerrero, C., Suzuki, Y., and Egido, J. (2002). The identification of IgA receptors in human mesangial cells: in the search for “Eldorado”. Kidney Int. 62:715–717.PubMedCrossRefGoogle Scholar
  12. Grossetete, B., Launay, P., Lehuen, A., Jungers, P., Bach, J. F., and Monteiro, R. C. (1998). Down-regulation of Fc( receptors on blood cells of IgA nephropathy patients: Evidence for a negative regulatory role of serum IgA. Kidney Int. 53:1321–1335.PubMedCrossRefGoogle Scholar
  13. Grossetete, B., Viard, J. P., Lehuen, A., Bach, J. F., and Monteiro, R. C. (1995). Impaired Fcc receptor expression is linked to increased immunoglobulin A levels and disease progression in HIV-1-infected patients. AIDS 9:229–234.PubMedGoogle Scholar
  14. Gulle, H., Samstag, A., Eibl, M. M., and Wolf, H. M. (1998). Physical and functional association of FctR with protein tyrosine kinase Lyn. Blood 91:383–391.PubMedGoogle Scholar
  15. Haddad, E., Moura, I. C., Arcos-Fajardo, M., Macher, M. A., Baudouin, V., Alberti, C., Loirat, C., Monteiro, R. C., and Peuchmaur, M. (2003). Enhanced expression of the CD71 mesangial IgA1 receptor in Berger disease and Henoch-Schonlein nephritis: association between CD71 expression and IgA deposits. J Am. Soc. Nephrol. 14:327–337.PubMedCrossRefGoogle Scholar
  16. Hamre, R., Farstad, I. N., Brandtzaeg, P., and Morton, H. C. (2003). Expression and modulation of the human immunoglobulin A Fc receptor (CD89) and the FcR ttchain on myeloid cells in blood and tissue. Scand. J. Immunol. 57:506–516.PubMedCrossRefGoogle Scholar
  17. Hellwig, S. M., van Spriel, A. B., Schellekens, J. F., Mooi, F. R., and van de Winkel, J. G. (2001). Immunoglobulin A-mediated protection against Bordetella pertussis infection. Infect. Immun. 69:4846–4850.PubMedCrossRefGoogle Scholar
  18. Herr, A. B., Ballister, E. R., and Bjorkman, P. J. (2003a). Insights into IgA-mediated immune responses from the crystal structures of human FcHRI and its complex with IgA1-Fc. Nature 423:614–620.PubMedCrossRefGoogle Scholar
  19. Herr, A. B., White, C. L., Milburn, C., Wu, C., and Bjorkman, P. J. (2003b). Bivalent binding of IgA1 to FclRI suggests a mechanism for cytokine activation of IgA phagocytosis. J. Mol. Biol. 327:645–657.PubMedCrossRefGoogle Scholar
  20. Heystek, H. C., Moulon, C., Woltman, A. M., Garonne, P., and van Kooten, C. (2002). Human immature dendritic cells efficiently bind and take up secretory IgA without the induction of maturation. J. Immunol. 168:102–107.PubMedGoogle Scholar
  21. Hulett, M. D., and Hogarth, P. M. (1994). Molecular basis of Fc receptor function. Adv. Immunol. 57:1–127.PubMedCrossRefGoogle Scholar
  22. Jasek, M., Obojski, A., Manczak, M., Wisniewski, A., Winiarska, B., Malolepszy, J., Jutel, M., Luszczek, W., and Kusnierczyk, P. (2004). Are single nucleotide polymorphisms of the immunoglobulin A Fc receptor gene associated with allergic asthma? Int. Arch. Allergy Immunol. 135:325–331.PubMedCrossRefGoogle Scholar
  23. Johansen, F. E., Braathen, R., and Brandtzaeg, P. (2000). Role of J chain in secretory immunoglobulin formation. Scand. J. Immunol. 52:240–248.PubMedCrossRefGoogle Scholar
  24. Johansen, F. E., and Brandtzaeg, P. (2004). Transcriptional regulation of the mucosal IgA system. Trends Immunol. 25:150–157.PubMedCrossRefGoogle Scholar
  25. Kaetzel, C. S. (2001). Polymeric Ig receptor: Defender of the fort or Trojan horse? Curr. Biol. 11:R35–R38.PubMedCrossRefGoogle Scholar
  26. Kaetzel, C. S. (2005). The polymeric immunoglobulin receptor: Bridging innate and adaptive immune responses at mucosal surfaces. Immunol. Rev. 206:83–99.PubMedCrossRefGoogle Scholar
  27. Kaneko, S., Kobayashi, T., Yamamoto, K., Jansen, M. D., van de Winkel, J. G., and Yoshie, H. (2004). A novel polymorphism of FcKRI (CD89) associated with aggressive periodontitis. Tissue Antigens 63:572–577.PubMedCrossRefGoogle Scholar
  28. Kato, K., Fridman, W. H., Arata, Y., and Sautes-Fridman, C. (2000). A conformational change in the Fc precludes the binding of two Fcccreceptor molecules to one IgG. Immunol. Today 21:310–312.PubMedCrossRefGoogle Scholar
  29. Kerr, M. A. (1990). The structure and function of human IgA. Biochem. J. 271:285–296.PubMedGoogle Scholar
  30. Kerr, M. A., Stewart, W. W., Bonner, B. C., Greer, M. R., Mackenzie, S. J., and Steele, M. G. (1995). The diversity of leucocyte IgA receptors. Contrib. Nephrol. 111:60–65.PubMedGoogle Scholar
  31. Kiekens, R. C., Thepen, T., Oosting, A. J., Bihari, I. C., van de Winkel, J. G., Bruijnzeel-Koomen, C. A., and Knol, E. F. (2001). Heterogeneity within tissue-specific macrophage and dendritic cell populations during cutaneous inflammation in atopic dermatitis. Br. J Dermatol. 145:957–965.PubMedCrossRefGoogle Scholar
  32. Kitamura, T., Garofalo, R. P., Kamijo, A., Hammond, D. K., Oka, J. A., Caflisch, C. R., Shenoy, M., Casola, A., Weigel, P. H., and Goldblum, R. M. (2000). Human intestinal epithelial cells express a novel receptor for IgA. J. Immunol. 164:5029–5034.PubMedGoogle Scholar
  33. Lang, M. L., Chen, Y. W., Shen, L., Gao, H., Lang, G. A., Wade, T. K., and Wade, W. F. (2002). IgA Fc receptor (FcWR) cross-linking recruits tyrosine kinases, phosphoinositide kinases and serine/threonine kinases to glycolipid rafts. Biochem. J. 364:517–525.PubMedCrossRefGoogle Scholar
  34. Lang, G. A., and Lang, M. L. (2006). Protein kinase BL is required for vesicle trafficking and class II presentation of IgA Fc receptor (CD89)-targeted antigen. J. Immunol. 176:3987–3994.PubMedGoogle Scholar
  35. Lang, M. L., Shen, L., Gao, H., Cusack, W. F., Lang, G. A., and Wade, W. F. (2001). FcL receptor cross-linking causes translocation of phosphatidlyinositol-dependent protein kinase 1 and protein kinase Bd to MHC class II peptide-loading-like compartments. J. Immunol. 166:5585–5593.PubMedGoogle Scholar
  36. Lang, M. L., Shen, L., and Wade, W. F. (1999). L-Chain dependent recruitment of tyrosine kinases to membrane rafts by the human IgA receptor FcsR. J. Immunol. 163:5391–5398.PubMedGoogle Scholar
  37. Launay, P., Grossetete, B., Arcos-Fajardo, M., Gaudin, E., Torres, S. P., Beaudoin, L., Patey-Mariaud, D. S., Lehuen, A., and Monteiro, R. C. (2000). FcP receptor (CD89) mediates the development of Immunoglobulin A (IgA) nephropathy (Berger’s disease). Evidence for pathogenic soluble receptor-IgA complexes in patients and CD89 transgenic mice. J. Exp. Med. 191:1999–2010.PubMedCrossRefGoogle Scholar
  38. Launay, P., Lehuen, A., Kawakami, T., Blank, U., and Monteiro, R. C. (1998). IgA Fc receptor (CD89) activation enables coupling to syk and Btk tyrosine kinase pathways: Differential signaling after IFN- nnor phorbol ester stimulation. J. Leuk. Biol. 63:636–642.Google Scholar
  39. Launay, P., Patry, C., Lehuen, A., Pasquier, B., Blank, U., and Monteiro, R. C. (1999). Alternative endocytic pathway for immunoglobulin A Fc receptors (CD89) depends on the lack of FcRccassociation and protects against degradation of bound ligand. J. Biol. Chem. 274:7216–7225.PubMedCrossRefGoogle Scholar
  40. Maliszewski, C. R., March, C. J., Schoenborn, M. A., Gimpel, S., and Shen, L. (1990). Expression cloning of a human Fc receptor for IgA. J. Exp. Med. 172:1665–1672.PubMedCrossRefGoogle Scholar
  41. Mantis, N. J., Cheung, M. C., Chintalacharuvu, K. R., Rey, J., Corthesy, B., and Neutra, M. R. (2002). Selective adherence of IgA to murine Peyer’s patch M cells: Evidence for a novel IgA receptor. J. Immunol. 169:1844–1851.PubMedGoogle Scholar
  42. Martin, A. M., Kulski, J. K., Witt, C., Pontarotti, P., and Christiansen, F. T. (2002). Leukocyte Ig-like receptor complex (LRC) in mice and men. Trends Immunol. 23:81–88.PubMedCrossRefGoogle Scholar
  43. Maruoka, T., Nagata, T., and Kasahara, M. (2004). Identification of the rat IgA Fc receptor encoded in the leukocyte receptor complex. Immunogenetics 55:712–716.PubMedCrossRefGoogle Scholar
  44. McDonald, K. J., Cameron, A. J., Allen, J. M., and Jardine, A. G. (2002). Expression of Fc s// receptor by human mesangial cells: A candidate receptor for immune complex deposition in IgA nephropathy. Biochem. Biophys. Res. Commun. 290:438–442.PubMedCrossRefGoogle Scholar
  45. Monteiro, R. C. (2005). New insights in the pathogenesis of IgA nephropathy. Nefrologia 25(Suppl. 2):82–86.PubMedGoogle Scholar
  46. Monteiro, R. C., Cooper, M. D., and Kubagawa, H. (1992). Molecular heterogeneity of Fci receptors detected by receptor-specific monoclonal antibodies. J. Immunol. 148:1764–1770.PubMedGoogle Scholar
  47. Monteiro, R. C., Grossetete, B., Nguyen, A. T., Jungers, P., and Lehuen, A. (1995). Dysfunctions of FcM receptors by blood phagocytic cells in IgA nephropathy. Contrib. Nephrol. 111:116–122.PubMedGoogle Scholar
  48. Monteiro, R. C., Hostoffer, R. W., Cooper, M. D., Bonner, J. R., Gartland, G. L., and Kubagawa, H. (1993). Definition of immunoglobulin A receptors on eosinophils and their enhanced expression in allergic individuals. J. Clin. Invest. 92:1681–1685.PubMedCrossRefGoogle Scholar
  49. Monteiro, R. C., and van de Winkel, J. G. (2003). IgA Fc Receptors. Annu. Rev. Immunol. 21:177–204.PubMedCrossRefGoogle Scholar
  50. Morton, H. C., and Brandtzaeg, P. (2001). CD89: the human myeloid IgA Fc receptor. Arch. Immunol. Ther. Exp. (Warsz.) 49:217–229.Google Scholar
  51. Morton, H. C., Pleass, R. J., Storset, A. K., Brandtzaeg, P., and Woof, J. M. (2005). Cloning and characterization of equine CD89 and identification of the CD89 gene in chimpanzees and rhesus macaques. Immunology 115:74–78.PubMedCrossRefGoogle Scholar
  52. Morton, H. C., Pleass, R. J., Storset, A. K., Dissen, E., Williams, J. L., Brandtzaeg, P., and Woof, J. M. (2004). Cloning and characterization of an immunoglobulin A Fc receptor from cattle. Immunology 111:204–211.PubMedCrossRefGoogle Scholar
  53. Morton, H. C., van den Herik-Oudijk, I. E., Vossebeld, P., Snijders, A., Verhoeven, A. J., Capel, P. J., and van de Winkel, J. G. (1995). Functional association between the human myeloid immunoglobulin A Fc receptor (CD89) and FcR eechain. Molecular basis for CD89/FcR ccchain association. J. Biol. Chem. 270:29, 781–29, 787.Google Scholar
  54. Morton, H. C., van Egmond, M., and van de Winkel, J. G. (1996). Structure and function of human IgA Fc receptors (FcgR). Crit. Rev. Immunol. 16:423–440.PubMedGoogle Scholar
  55. Morton, H. C., van Zandbergen, G., van Kooten, C., Howard, C. J., van de Winkel, J. G., and Brandtzaeg, P. (1999). Immunoglobulin-binding sites of human FcmRI (CD89) and bovine FcR2R are located in their membrane-distal extracellular domains. J. Exp. Med. 189:1715–1722.PubMedCrossRefGoogle Scholar
  56. Mota, G., Manciulea, M., Cosma, E., Popescu, I., Hirt, M., Jensen-Jarolim, E., Calugaru, A., Galatiuc, C., Regalia, T., Tamandl, D., Spittler, A., and Boltz-Nitulescu, G. (2003). Human NK cells express Fc receptors for IgA which mediate signal transduction and target cell killing. Eur. J. Immunol. 33:2197–2205.PubMedCrossRefGoogle Scholar
  57. Moura, I. C., Arcos-Fajardo, M., Gdoura, A., Leroy, V., Sadaka, C., Mahlaoui, N., Lepelletier, Y., Vrtovsnik, F., Haddad, E., Benhamou, M., and Monteiro, R. C. (2005). Engagement of transferrin receptor by polymeric IgA1: Evidence for a positive feedback loop involving increased receptor expression and mesangial cell proliferation in IgA Nephropathy. J Am. Soc. Nephrol. 16:2667–2676.PubMedCrossRefGoogle Scholar
  58. Moura, I. C., Arcos-Fajardo, M., Sadaka, C., Leroy, V., Benhamou, M., Novak, J., Vrtovsnik, F., Haddad, E., Chintalacharuvu, K. R., and Monteiro, R. C. (2004). Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J Am. Soc. Nephrol. 15:622–634.PubMedCrossRefGoogle Scholar
  59. Moura, I. C., Centelles, M. N., Arcos-Fajardo, M., Malheiros, D. M., Collawn, J. F., Cooper, M. D., and Monteiro, R. C. (2001). Identification of the transferrin receptor as a novel immunoglobulin (Ig) A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J. Exp. Med. 194:417–425.PubMedCrossRefGoogle Scholar
  60. Nahm, D. H., Kim, H. Y., and Park, H. S. (1998). Elevation of specific immunoglobulin A antibodies to both allergen and bacterial antigen in induced sputum from asthmatics. Eur. Respir. J. 12:540–545.PubMedCrossRefGoogle Scholar
  61. Narita, I., Goto, S., Saito, N., Sakatsume, M., Jin, S., Omori, K., and Gejyo, F. (2001). Genetic polymorphisms in the promoter and 5´ UTR region of the Fcg receptor (CD89) are not associated with a risk of IgA nephropathy. J. Hum. Genet. 46:694–698.PubMedCrossRefGoogle Scholar
  62. Nikolaidis, N., Klein, J., and Nei, M. (2005). Origin and evolution of the Ig-like domains present in mammalian leukocyte receptors: Insights from chicken, frog, and fish homologues. Immunogenetics 57:151–157.PubMedCrossRefGoogle Scholar
  63. Oortwijn, B. D., Roos, A., van der Boog, P. J., Klar-Mohamad, N., van Remoortere, A., Deelder, A. M., Daha, M. R., and van Kooten, C. (2007). Monomeric and polymeric IgA show a similar association with the myeloid FcpRI/CD89. Mol. Immunol. 44:996–973.CrossRefGoogle Scholar
  64. Otten, M.A., Groenveld, I., van de Winkel, J. G., and van Egmond, M. (2006). Inefficient antigen presentation via the IgA Fc receptor (FcIRI) on dendritic cells. Immunobiology 211:503–510.PubMedCrossRefGoogle Scholar
  65. Otten, M. A., and van Egmond, M. (2004). The Fc receptor for IgA (FcIRI, CD89). Immunol. Lett. 92:23–31.PubMedCrossRefGoogle Scholar
  66. Ouadrhiri, Y., Pilette, C., Monteiro, R. C., Vaerman, J. P., and Sibille, Y. (2002). Effect of IgA on respiratory burst and cytokine release by human alveolar macrophages: role of ERK1/2 mitogen-activated protein kinases and NF- B. Am. J Respir. Cell Mol. Biol. 26:315–332.PubMedGoogle Scholar
  67. Park, R. K., Izadi, K. D., Deo, Y. M., and Durden, D. L. (1999). Role of src in the modulation of multiple adaptor proteins in FcPRI oxidant signaling. Blood 94:2112–2120.PubMedGoogle Scholar
  68. Pasquier, B., Launay, P., Kanamaru, Y., Moura, I. C., Pfirsch, S., Ruffie, C., Henin, D., Benhamou, M., Pretolani, M., Blank, U., and Monteiro, R. C. (2005). Identification of FcPRI as an inhibitory receptor that controls inflammation: Dual role of FcRmmITAM. Immunity 22:31–42.PubMedGoogle Scholar
  69. Pasquier, B., Lepelletier, Y., Baude, C. O., and Monteiro, R. C. (2004). Differential expression and function of IgA receptors (CD89 and CD71) during maturation of dendritic cells. J. Leuk. Biol. 76:1134–1141.CrossRefGoogle Scholar
  70. Patry, C., Sibille, Y., Lehuen, A., and Monteiro, R. C. (1996). Identification of Fcc receptor (CD89) isoforms generated by alternative splicing that are differentially expressed between blood monocytes and alveolar macrophages. J. Immunol. 156:4442–4448.PubMedGoogle Scholar
  71. Phalipon, A., and Corthesy, B. (2003). Novel functions of the polymeric Ig receptor: Well beyond transport of immunoglobulins. Trends Immunol. 24:55–58.PubMedCrossRefGoogle Scholar
  72. Rogers, K. A., Scinicariello, F., and Attanasio, R. (2004). Identification and characterization of macaque CD89 (immunoglobulin A Fc receptor). Immunology 113:178–186.PubMedCrossRefGoogle Scholar
  73. Rudd, P. M., Fortune, F., Patel, T., Parekh, R. B., Dwek, R. A., and Lehner, T. (1994). A human T-cell receptor recognizes ‘O’-linked sugars from the hinge region of human IgA1 and IgD. Immunology 83:99–106.PubMedGoogle Scholar
  74. Saito, K., Suzuki, K., Matsuda, H., Okumura, K., and Ra, C. (1995). Physical association of Fc receptor uuchain homodimer with IgA receptor. J. Allergy Clin. Immunol. 96:1152–1160.PubMedCrossRefGoogle Scholar
  75. Sansonetti, P. J. (2004). War and peace at mucosal surfaces. Nat. Rev. Immunol. 4:953–964.PubMedCrossRefGoogle Scholar
  76. Segal, D. M., Taurog, J. D., and Metzger, H. (1977). Dimeric immunoglobulin E serves as a unit signal for mast cell degranulation. Proc. Natl. Acad. Sci. USA 74:2993–2997.PubMedCrossRefGoogle Scholar
  77. Shibuya, A., and Honda, S. (2006). Molecular and functional characteristics of the Fcc//R, a novel Fc receptor for IgM and IgA. Springer Semin. Immun. 28:377–382.CrossRefGoogle Scholar
  78. Shibuya, A., Sakamoto, N., Shimizu, Y., Shibuya, K., Osawa, M., Hiroyama, T., Eyre, H. J., Sutherland, G. R., Endo, Y., Fujita, T., Miyabayashi, T., Sakano, S., Tsuji, T., Nakayama, E., Phillips, J. H., Lanier, L. L., and Nakauchi, H. (2000). Fck// receptor mediates endocytosis of IgM-coated microbes. Nat. Immunol. 1:441–446.PubMedCrossRefGoogle Scholar
  79. Shimizu, Y., Honda, S., Yotsumoto, K., Tahara-Hanaoka, S., Eyre, H. J., Sutherland, G. R., Endo, Y., Shibuya, K., Koyama, A., Nakauchi, H., and Shibuya, A. (2001). Fci// receptor is a single gene-family member closely related to polymeric immunoglobulin receptor encoded on chromosome 1. Immunogenetics 53:709–711.PubMedCrossRefGoogle Scholar
  80. Shimokawa, T., and Ra, C. (2003). C/EBP S and Ets protein family members regulate the human myeloid IgA Fc receptor (FcdR, CD89) promoter. J. Immunol. 170:2564–2572.PubMedGoogle Scholar
  81. Shimokawa, T., Tsuge, T., Okumura, K., and Ra, C. (2000). Identification and characterization of the promoter for the gene encoding the human myeloid IgA Fc receptor (FceR, CD89). Immunogenetics 51:945–954.PubMedCrossRefGoogle Scholar
  82. Silvain, C., Patry, C., Launay, P., Lehuen, A., and Monteiro, R. C. (1995). Altered expression of monocyte IgA Fc receptors is associated with defective endocytosis in patients with alcoholic cirrhosis. Potential role for IFN-s. J. Immunol. 155:1606–1618.PubMedGoogle Scholar
  83. Smith, P. D., Ochsenbauer-Jambor, C., and Smythies, L. E. (2005). Intestinal macrophages: unique effector cells of the innate immune system. Immunol. Rev. 206:149–159.PubMedCrossRefGoogle Scholar
  84. Stockert, R. J. (1995). The asialoglycoprotein receptor: Relationships between structure, function, and expression. Physiol. Rev. 75:591–609.PubMedGoogle Scholar
  85. Swenson, C. D., Patel, T., Parekh, R. B., Tamma, S. M., Coico, R. F., Thorbecke, G. J., and Amin, A. R. (1998). Human T cell IgD receptors react with O-glycans on both human IgD and IgA1. Eur. J. Immunol. 28:2366–2372.PubMedCrossRefGoogle Scholar
  86. Tsuge, T., Shimokawa, T., Horikoshi, S., Tomino, Y., and Ra, C. (2001). Polymorphism in promoter region of Fcm receptor gene in patients with IgA nephropathy. Hum. Genet. 108:128–133.PubMedCrossRefGoogle Scholar
  87. Valerius, T., Stockmeyer, B., van Spriel, A. B., Graziano, R. F., van den Herik-Oudijk, I. E., Repp, R., Deo, Y. M., Lund, J., Kalden, J. R., Gramatzki, M., and van de Winkel, J. G. (1997). FcnRI (CD89) as a novel trigger molecule for bispecific antibody therapy. Blood 90:4485–4492.PubMedGoogle Scholar
  88. van der Boog, P. J., de Fijter, J. W., van Kooten, C., Van Der, H. R., van Seggelen, A., van Es, L. A., and Daha, M. R. (2003). Complexes of IgA with FclRI/CD89 are not specific for primary IgA nephropathy. Kidney Int. 63:514–521.PubMedCrossRefGoogle Scholar
  89. van der Boog, P. J., van Kooten, C., de Fijter, J. W., and Daha, M. R. (2005). Role of macromolecular IgA in IgA nephropathy. Kidney Int. 67:813–821.PubMedCrossRefGoogle Scholar
  90. van der Boog, P. J., van Kooten, C., van Zandbergen, G., Klar-Mohamad, N., Oortwijn, B., Bos, N. A., van Remoortere, A., Hokke, C. H., de Fijter, J. W., and Daha, M. R. (2004). Injection of recombinant FcDRI/CD89 in mice does not induce mesangial IgA deposition. Nephrol. Dial. Transplant. 19:2729–2736.PubMedCrossRefGoogle Scholar
  91. van der Boog, P. J., van Zandbergen, G., de Fijter, J. W., Klar-Mohamad, N., van Seggelen, A., Brandtzaeg, P., Daha, M. R., and van Kooten, C. (2002). Fc.RI/CD89 circulates in human serum covalently linked to IgA in a polymeric state. J. Immunol. 168:1252–1258.PubMedGoogle Scholar
  92. van der Pol W. L., Vidarsson, G., Vile, H. A., van de Winkel, J. G., and Rodriguez, M. E. (2000). Pneumococcal capsular polysaccharide-specific IgA triggers efficient neutrophil effector functions via FcgRI (CD89). J. Infect. Dis. 182:1139–1145.PubMedCrossRefGoogle Scholar
  93. van Dijk, T. B., Bracke, M., Caldenhoven, E., Raaijmakers, J. A., Lammers, J. W., Koenderman, L., and de Groot, R. P. (1996). Cloning and characterization of Fc, Rb, a novel FcR receptor (CD89) isoform expressed in eosinophils and neutrophils. Blood 88:4229–4238.PubMedGoogle Scholar
  94. van Egmond, M., Damen, C. A., van Spriel, A. B., Vidarsson, G., van Garderen, E., and van de Winkel, J. G. (2001). IgA and the IgA Fc receptor. Trends Immunol. 22:205–211.PubMedCrossRefGoogle Scholar
  95. van Egmond, M., van Garderen, E., van Spriel, A. B., Damen, C. A., van Amersfoort, E. S., van Zandbergen, G., van Hattum, J., Kuiper, J., and van de Winkel, J. G. (2000). FcfRI-positive liver Kupffer cells: Reappraisal of the function of immunoglobulin A in immunity. Nat. Med. 6:680–685.PubMedCrossRefGoogle Scholar
  96. van Egmond, M., van Vuuren, A. J., Morton, H. C., van Spriel, A. B., Shen, L., Hofhuis, F. M., Saito, T., Mayadas, T. N., Verbeek, J. S., and van de Winkel, J. G. (1999). Human immunoglobulin A receptor (FckRI, CD89) function in transgenic mice requires both FcR ggchain and CR3 (CD11b/CD18). Blood 93:4387–4394.PubMedGoogle Scholar
  97. van Spriel, A. B., Leusen, J. H., Vile, H., and van de Winkel, J. G. (2002). Mac-1 (CD11b/CD18) as accessory molecule for Fc R (CD89) binding of IgA. J. Immunol. 169:3831–3836.PubMedGoogle Scholar
  98. Vidarsson, G., Der Pol, W. L., van Den Elsen, J. M., Vile, H., Jansen, M., Duijs, J., Morton, H. C., Boel, E., Daha, M. R., Corthesy, B., and van de Winkel, J. G. (2001). Activity of human IgG and IgA subclasses in immune defense against Neisseria meningitidis serogroup B. J. Immunol. 166:6250–6256.PubMedGoogle Scholar
  99. Volz, A., Wende, H., Laun, K., and Ziegler, A. (2001). Genesis of the ILT/LIR/MIR clusters within the human leukocyte receptor complex. Immunol. Rev. 181:39–51.PubMedCrossRefGoogle Scholar
  100. Watanabe, A., Shimokawa, T., Moriyama, M., Komine, F., Amaki, S., Arakawa, Y., and Ra, C. (2006). Genetic variants of the IgA Fc receptor (Fc) R, CD89) promoter in chronic hepatitis C patients. Immunogenetics 58:937–946.PubMedCrossRefGoogle Scholar
  101. Weisbart, R. H., Kacena, A., Schuh, A., and Golde, D. W. (1988). GM-CSF induces human neutrophil IgA-mediated phagocytosis by an IgA Fc receptor activation mechanism. Nature 332:647–648.PubMedCrossRefGoogle Scholar
  102. Wines, B. D., Hulett, M. D., Jamieson, G. P., Trist, H. M., Spratt, J. M., and Hogarth, P. M. (1999). Identification of residues in the first domain of human FcW receptor essential for interaction with IgA. J. Immunol. 162:2146–2153.PubMedGoogle Scholar
  103. Wines, B. D., Sardjono, C. T., Trist, H. H., Lay, C. S., and Hogarth, P. M. (2001). The interaction of FcWRI with IgA and its implications for ligand binding by immunoreceptors of the leukocyte receptor cluster. J. Immunol. 166:1781–1789.PubMedGoogle Scholar
  104. Woof, J. M., and Burton, D. R. (2004). Human antibody-Fc receptor interactions illuminated by crystal structures. Nat. Rev. Immunol. 4:89–99.PubMedCrossRefGoogle Scholar
  105. Woof, J. M., and Mestecky, J. (2005). Mucosal immunoglobulins. Immunol. Rev. 206:64–82.PubMedCrossRefGoogle Scholar
  106. Woof, J. M., van Egmond, M., and Kerr, M. A. (2005). Fc receptors. In: Mesteck, J., Lamm, M. E., Strober, W., Bienenstock, J., McGhee, J. R., and Mayer, L. (eds), Mucosal Immunology, 3rd ed. Elsevier/Academic Press, Amsterdam, pp 251–265.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • H. Craig Morton
    • 1
  1. 1.Institute of Marine ResearchNorway

Personalised recommendations