Skip to main content

Evolution in biological systems is rarely wasteful; it involves both adaptation and conservation of resources. In this context especially, the quantity of IgA secreted onto mucosal surfaces and the cellular processes that generate it are all the more remarkable. Approximately 1010 plasma cells per meter of gut are situated in the diffuse connective tissue stroma between the epithelium and the muscularis mucosa referred to as the lamina propria (Fig. 2.1) (Brandtzaeg et al., 1999; Brandtzaeg and Pabst, 2004). These produce antibody, most of which is immumoglobin A (IgA), so that ~3–5g of IgA is actively transported each day into the lumen of the human gut (Conley and Delacroix, 1987). This secreted antibody has a critical role in maintaining homeostasis in an environment where the immune system and potentially proinflammatory bacterial stimuli are closely juxtaposed and separated by a single epithelial layer (Fagarasan et al., 2002). The aim of this chapter is to discuss the mechanisms that generate, diversify, and disseminate this extensive IgA-producing plasma cell population. There are considerable interspecies differences in mucosal lymphoid tissue that will be identified where relevant, but the final outcome in all species is the same: the production of the largest population of plasma cells in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhiani, A. A., Schon, K., Franzen, L. E., Pappo, J., and Lycke, N. (2004). Helicobacter pylori-specific antibodies impair the development of gastritis, facilitate bacterial colonization, and counteract resistance against infection. J. Immunol. 172:5024–5033.

    CAS  PubMed  Google Scholar 

  • Akhiani, A. A., Stensson, A., Schon, K., and Lycke, N. Y. (2005). IgA antibodies impair resistance against Helicobacter pylori infection: Studies on immune evasion in IL-10-deficient mice. IgA antibodies impair resistance against Helicobacter pylori infection: studies on immune evasion in IL-10-deficient mice. J. Immunol. 174:8144–8153.

    CAS  PubMed  Google Scholar 

  • Amlot, P. L., Grennan, D., and Humphrey, J. H. (1985). Splenic dependence of the antibody response to thymus-independent (TI-2) antigens. Eur. J. Immunol. 15:508–512.

    Article  CAS  PubMed  Google Scholar 

  • Amlot, P. L., and Hayes, A. E. (1985). Impaired human antibody response to the thymus-independent antigen, DNP-Ficoll, after splenectomy. Implications for post-splenectomy infections. Lancet 1:1008–1011.

    Article  CAS  PubMed  Google Scholar 

  • Anderle, P., Rumbo, M., Sierro, F., Mansourian, R., Michetti, P., Roberts, M. A., and Kraehenbuhl, J.-P. (2005). Novel markers of the human follicle-associated epithelium identified by genomic profiling and microdissection. Gastroenterology 129:321–327.

    Article  CAS  PubMed  Google Scholar 

  • Bhalla, D. K., Owen, R. L., Bhalla, D. K., and Owen, R. L. (1982). Cell renewal and migration in lymphoid follicles of Peyer’s patches and cecum:An autoradiographic study in mice. Gastroenterology 82:232–242.

    CAS  PubMed  Google Scholar 

  • Bos, N. A., Bun, J. C., Popma, S. H., Cebra, E. R., Deenen, G. J., van der Cammen, M. J., Kroese, F. G., and Cebra, J. J. (1996). Monoclonal immunoglobulin A derived from peritoneal B cells is encoded by both germ line and somatically mutated VH genes and is reactive with commensal bacteria. Infect. Immun. 64:616–623.

    CAS  PubMed  Google Scholar 

  • Boursier, L., Dunn-Walters, D. K., and Spencer, J. (1999). Characteristics of IgVH genes used by human intestinal plasma cells from childhood. Immunology 97:558–564.

    Article  CAS  PubMed  Google Scholar 

  • Boursier, L., Farstad, I. N., Mellembakken, J. R., Brandtzaeg, P., and Spencer, J. (2002). IgVH gene analysis suggests that peritoneal B cells do not contribute to the gut immune system in man. Eur. J. Immunol. 32:2427–2436.

    Article  CAS  PubMed  Google Scholar 

  • Boursier, L., Gordon, J. N., Thiagamoorthy, S., Edgeworth, J. D., and Spencer J. (2005). Human intestinal IgA response is generated in the organized gut-associated lymphoid tissue but not in the lamina propria. Human intestinal IgA response is generated in the organized gut-associated lymphoid tissue but not in the lamina propria. Gastroenterology 128:1879–1889.

    Article  CAS  PubMed  Google Scholar 

  • Bowman, E. P., Kuklin, N. A., Youngman, K. R., Lazarus, N. H., Kunkel, E. J., Pan, J., Greenberg, H. B., and Butcher, E. C. (2002). The intestinal chemokine thymus-expressed chemokine (CCL25) attracts IgA antibody-secreting cells. J. Exp. Med. 195:269–275.

    Article  CAS  PubMed  Google Scholar 

  • Brandtzaeg, P., Farstad, I. N., Johansen, F. E., Morton, H. C., Norderhaug, I. N., and Yamanaka, T. (1999). The B-cell system of human mucosae and exocrine glands. Immunol. Rev. 171:45–87.

    Article  CAS  PubMed  Google Scholar 

  • Brandtzaeg, P., Kett, K., Rognum, T. O., Soderstrom, R., Bjorkander, J., Soderstrom, T., Petrusson, B., and Hanson, L. A. (1986). Distribution of mucosal IgA and IgG subclass-producing immunocytes and alterations in various disorders. Monogr. Allergy 20:179–194.

    CAS  PubMed  Google Scholar 

  • Brandtzaeg, P., and Pabst, R. (2004). Let’s go mucosal: Communication on slippery ground. Trends Immunol. 25:570–577.

    Article  CAS  PubMed  Google Scholar 

  • Briere, F., Defrance, T., Vanbervliet, B., Bridon, J.-M., Durand, I., Rousset, F., and Banchereau, J. (1995). Transforming growth factor B (TGF ) directs IgA1 and IgA2 switching in human naive B cells. Adv. Exp. Med. Biol. 371A:21–26.

    CAS  PubMed  Google Scholar 

  • Briskin, M. J., McEvoy, L. M., and Butcher, E. C. (1993). MAdCAM-1 has homology to immunoglobulin and mucin-like adhesion receptors and to IgA1. Nature 363:461–464.

    Article  CAS  PubMed  Google Scholar 

  • Butcher, E. C., Rouse, R. V., Coffman, R. L., Nottenburg, C. N., Hardy, R. R., and Weissman, I. L. (1982). Surface phenotype of Peyer’s patch germinal center cells: Implications for the role of germinal centers in B cell differentiation. J. Immunol. 129:2698–2707.

    CAS  PubMed  Google Scholar 

  • Casola, S., Otipoby, K. L., Alimzhanov, M., Humme, S., Uyttersprot, N., Kutok, J. L., Carroll, M. C., and Rajewsky, K. (2004). B cell receptor signal strength determines B cell fate. Nat. Immunol. 5:317–327.

    Article  CAS  PubMed  Google Scholar 

  • Cazac, B. B., and Roes, J. (2000). TGF-b receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13:443–451.

    Article  CAS  PubMed  Google Scholar 

  • Claassen, E., Kors, N., Dijkstra, C.D., and van Rooijen, N. (1986). Marginal zone of the spleen and the development and localization of specific antibody-forming cells against thymus-dependent and thymus-independent type-2 antigens. Immunology 57:399–403.

    CAS  PubMed  Google Scholar 

  • Clemens, J. D., Sack, D. A., Harris, J. R., Chakraborty, J., Khan, M. R., Stanton, B. F., Kay, B. A., Khan, M. U., Yunus, M., Atkinson, W., and Holmgren, J. (1986). Field trial of oral cholera vaccines in Bangladesh. Lancet 328:124–127.

    Article  Google Scholar 

  • Conley, M. E., and Delacroix, D. L. (1987). Intravascular and mucosal immunoglobulin A: Two separate but related systems of immune defense? Ann. Intern. Med. 106:892–899.

    CAS  PubMed  Google Scholar 

  • Cornes, J. S. (1965) Number, size and distribution of Peyer’s patches in the human small intestine. Gut 6:225–233.

    Article  CAS  PubMed  Google Scholar 

  • Craig, S. W., and Cebra, J. J. (1971) Peyer’s patches: An enriched source of precursors for IgA-producing immunocytes in the rabbit. J. Exp. Med. 134:188–200.

    Article  CAS  PubMed  Google Scholar 

  • Defrance, T., Vanbervliet, B., Briere, F., Durand, I., Rousset, F., and Banchereau, J. (1992). Interleukin 10 and transforming growth factor b cooperate to induce anti-CD40-activated naive human B cells to secrete immunoglobulin A. J. Exp. Med. 175:671–682.

    Article  CAS  PubMed  Google Scholar 

  • Du, M., Diss, T. C., Xu, C., Peng, H., Isaacson, P.G., and Pan, L. (1996). Ongoing mutation in MALT lymphoma immunoglobulin gene suggests that antigen stimulation plays a role in the clonal expansion. Leukemia 10:1190–1197.

    CAS  PubMed  Google Scholar 

  • Dukes, C., and Bussey, H. J. R. (1926). The number of lymphoid follicles of the human large intestine. J. Pathol. Bacteria 29:111–116.

    Article  Google Scholar 

  • Dunn-Walters, D. K., Isaacson, P. G., and Spencer, J. (1996). Sequence analysis of rearranged IgVH genes from microdissected human Peyer’s patch marginal zone B cells. Immunology 88:618–624.

    CAS  PubMed  Google Scholar 

  • Dunn-Walters, D. K., Isaacson, P. G., and Spencer, J. (1997). Sequence analysis of human IgVH genes indicates that ileal lamina propria plasma cells are derived from Peyer’s patches. Eur. J. Immunol. 27:463–467.

    Article  CAS  PubMed  Google Scholar 

  • Dunn-Walters, D. K. and Spencer J. (1998). Strong intrinsic biases towards mutation and conservation of bases in human IgVH genes during somatic hypermutation prevent statistical analysis of antigen selection. Immunology 95:339–345.

    Article  CAS  PubMed  Google Scholar 

  • DuPont, H. L., Hornick, R. B., Snyder, M. J., Libonati, J. P., Formal, S. B., and Gangarosa, E. J. (1972). Immunity in shigellosis. II. Protection induced by oral live vaccine or primary infection. J. Infect. Dis. 125:12–16.

    CAS  PubMed  Google Scholar 

  • Fagarasan, S., Kinoshita, K., Muramatsu, M., Ikuta, K., and Honjo, T. (2001). In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413:639–643.

    Article  CAS  PubMed  Google Scholar 

  • Fagarasan, S., Muramatsu, M., Suzuki, K., Nagaoka, H., Hiai, H., and Honjo, T. (2002). Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298:1424–1427.

    Article  CAS  PubMed  Google Scholar 

  • Falini, B., Tiacci, E., Pucciarini, A., Bigerna, B., Kurth, J., Hatzivassiliou, G., Droetto, S., Galletti, B. V., Gambacorta, M., Orazi, A., Pasqualucci, L., Miller, I., Kuppers, R., Dalla-Favera, R., and Cattoretti, G. (2003). Expression of the IRTA1 receptor identifies intraepithelial and subepithelial marginal zone B cells of the mucosa-associated lymphoid tissue (MALT). Blood 102:3684–3692.

    Article  CAS  PubMed  Google Scholar 

  • Farstad, I. N., Carlsen, H., Morton, H. C., and Brandtzaeg, P. (2000). Immunoglobulin A cell distribution in the human small intestine: Phenotypic and functional characteristics. Immunology 101:354–363.

    Article  CAS  PubMed  Google Scholar 

  • Farstad, I. N., Halstensen, T. S., Fausa, O., and Brandtzaeg, P. (1994). Heterogeneity of M-cell-associated B and T cells in human Peyer’s patches. Immunology 83:457–464.

    CAS  PubMed  Google Scholar 

  • Farstad, I. N., Halstensen, T. S., Lazarovits, A. I., Norstein, J., Fausa, O., and Brandtzaeg, P. (1995). Human intestinal B-cell blasts and plasma cells express the mucosal homing receptor integrin a4b7. Scand. J. Immunol. 42:662–672.

    Article  CAS  PubMed  Google Scholar 

  • Fayette, J., Dubois, B., Vandenabeele, S., Bridon, J.-M., Vanbervliet, B., Durand, I., Banchereau, J., Caux, C., and Brière, F. (1997). Human dendritic cells skew isotype switching of CD40-activated naive B cells towards IgA1 and IgA2. J. Exp. Med. 185:1909–1918.

    Article  CAS  PubMed  Google Scholar 

  • Finke, D., Acha-Orbea, H., Mattis, A., Lipp, M., and Kraehenbuhl, J. (2002). CD4+CD3 cells induce Peyer’s patch development: role of y441 integrin activation by CXCR5. Immunity 17:363–373.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, M., and Kuppers, R. (1998). Human IgA- and IgM-secreting intestinal plasma cells carry heavily mutated VH region genes. Eur. J. Immunol. 28:2971–2977.

    Article  CAS  PubMed  Google Scholar 

  • Formal, S. B., Kent, T. H., May, H. C., Palmer, A., Falkow, S., and LaBrec, E. H. (1966). Protection of monkeys against experimental shigellosis with a living attenuated oral polyvalent dysentery vaccine. J. Bacteriol. 92:17–22.

    CAS  PubMed  Google Scholar 

  • Gardby, E., Wrammert, J., Schon, K., Ekman, L., Leanderson, T., and Lycke, N. (2003). Strong differential regulation of serum and mucosal IgA responses as revealed in CD28-deficient mice using cholera toxin adjuvant. J. Immunol. 170:55–63.

    CAS  PubMed  Google Scholar 

  • Genta, R. M., Hamner, H. W., and Graham, D. Y. (1993). Gastric lymphoid follicles in Helicobacter pylori infection: Frequency, distribution, and response to triple therapy. Hum. Pathol. 24:577–583.

    Article  CAS  PubMed  Google Scholar 

  • Goodrich, M. E., and McGee, D. W. (1998). Regulation of mucosal B cell immunoglobulin secretion by intestinal epithelial cell-derived cytokines. Cytokine 10:948–955.

    Article  CAS  PubMed  Google Scholar 

  • Gowans, J. L., and Knight, E. J. (1964). The route of recirculation of lymphocytes in the rat. Proc. R. Soc. Lond. B: Biol. Sci. 159:257–282.

    Article  CAS  Google Scholar 

  • Guilliano, M. J., Foxx-Orenstein, A. E., and Lebman, D. A. (2001). The microenvironment of human Peyer’s patches inhibits the increase in CD38 expression associated with the germinal center reaction. J. Immunol. 166:2179–2185.

    CAS  PubMed  Google Scholar 

  • Hamada, H., Hiroi, T., Nishiyama, Y., Takahashi, H., Masunaga, Y., Hachimura, S., Kaminogawa, S., Takahashi-Iwanaga, H., Iwanaga, T., Kiyono, H., Yamamoto, H., and Ishikawa, H. (2002). Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J. Immunol. 168:57–64.

    CAS  PubMed  Google Scholar 

  • Hardie, D. L., Johnson, G. D., Khan, M., and MacLennan I. C. (1993). Quantitative analysis of molecules which distinguish functional compartments within germinal centers. Eur J Immunol. 23:997–1004.

    Article  CAS  PubMed  Google Scholar 

  • Haubrich, W. S. (2005). Peyer of Peyer’s patches. Gastroenterology 129:85.

    Article  Google Scholar 

  • Holmgren, J., Lycke, N., and Czerkinsky, C. (1993). Cholera toxin and cholera B subunit as oral-mucosal adjuvant and antigen vector systems. Vaccine 11:1179–1184.

    Article  CAS  PubMed  Google Scholar 

  • Holtmeier, W., Hennemann, A., and Caspary, W. F. (2000). IgA and IgM V(H) repertoires in human colon: Evidence for clonally expanded B cells that are widely disseminated. Gastroenterology 119:1253–1266.

    Article  CAS  PubMed  Google Scholar 

  • Husband, A. J., (1982). Kinetics of extravasation and redistribution of IgA-specific antibody-containing cells in the intestine. J. Immunol. 128:1355–1359.

    CAS  PubMed  Google Scholar 

  • Husband, A. J. and Gowans, J. L. (1978). The origin and antigen-dependent distribution of IgA-containing cells in the intestine. J. Exp. Med. 148:1146–1160.

    Article  CAS  PubMed  Google Scholar 

  • Kroese, F. G., Butcher, E. C., Stall, A. M., Lalor, P. A., Adams, S., and Herzenberg, L. A. (1989). Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int. Immunol. 1:75–78.

    Article  CAS  PubMed  Google Scholar 

  • Kunkel, E. J., and Butcher, E. C. (2003). Plasma-cell homing. Nat. Rev. Immunol. 3:822–829.

    Article  CAS  PubMed  Google Scholar 

  • Kunkel, E. J., Kim, C. H., Lazarus, N. H., Vierra, M. A., Soler, D., Bowman, E. P., and Butcher, E. C. (2003). CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J. Clin. Invest. 111:1001–1010.

    CAS  PubMed  Google Scholar 

  • Kweon, M. N., Yamamoto, M., Rennert, P. D., Park, E. J., Lee, A. Y., Chang, S. Y., Hiroi, T., Nanno, M., and Kiyono, H. (2005). Prenatal blockage of lymphotoxin p receptor and TNF receptor p55 signaling cascade resulted in the acceleration of tissue genesis for isolated lymphoid follicles in the large intestine. J. Immunol. 174:4365–4372.

    CAS  PubMed  Google Scholar 

  • Lanning, D. K., Rhee, K. J., and Knight, K. L. (2005). Intestinal bacteria and development of the B-lymphocyte repertoire. Trends Immunol. 26:419–425.

    Article  CAS  PubMed  Google Scholar 

  • Lanning, D., Zhu, X., Zhai, S. K., and Knight, K. L. (2000). Development of the antibody repertoire in rabbit: gut-associated lymphoid tissue, microbes, and selection. Immunol Rev. 175:214–228.

    Article  CAS  PubMed  Google Scholar 

  • Litinskiy, M. B., Nardelli, B., Hilbert, D. M., He, B., Schaffer, A., Casali, P., and Cerutti, A. (2002). DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3:822–829.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y.-J., Malisan, F., de Bouteiller, O., Guret, C., Lebecque, S., Banchereau, J., Mills, F. C., Max, E. E., and Martinez-Valdez, H. (1996). Within germinal centers, isotype switching of immunoglobulin genes occurs after the onset of somatic mutation. Immunity 4:241–250.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y.-J., Oldfield. S., and MacLennan, I. C. (1988). Memory B cells in T cell-dependent antibody responses colonize the splenic marginal zones. Eur. J. Immunol. 18:355–362.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, R. G., and Newberry, R. D. (2004). Isolated lymphoid follicles can function as sites for induction of mucosal immune responses. Ann. NY Acad. Sci. 1029:44–57.

    Article  CAS  PubMed  Google Scholar 

  • Lue, C., van den Wall Bake, A. W., Prince, S. J., Julian, B. A., Tseng, M. L., Radl, J., Elson, C. O., and Mestecky J. (1994). Intraperitoneal immunization of human subjects with tetanus toxoid induces specific antibody-secreting cells in the peritoneal cavity and in the circulation, but fails to elicit a secretory IgA response. Clin. Exp. Immunol. 96:356–363.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, K. G., McDonough, J. S., and Newberry, R. D. (2005). Adaptive immune responses are dispensable for isolated lymphoid follicle formation: Antigen-naive, lymphotoxin-sufficient B lymphocytes drive the formation of mature isolated lymphoid follicles. J. Immunol. 174:5720–5728.

    CAS  PubMed  Google Scholar 

  • MacDonald, T. T., Spencer, J., Viney, J. L., Williams, C. B., and Walker-Smith, J. A. (1987). Selective biopsy of human Peyer’s patches during ileal endoscopy. Gastroenterology 93:1356–1362.

    CAS  PubMed  Google Scholar 

  • Macpherson, A. J., Gatto, D., Sainsbury, E., Harriman, G. R., Hengartner, H., and Zinkernagel, R. M. (2000). A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288:2222–2226.

    Article  CAS  PubMed  Google Scholar 

  • Macpherson, A. J., Lamarre, A., McCoy, K., Harriman, G. R., Odermatt, B., Dougan, G., Hengartner, H., and Zinkernagel, R. M. (2001). IgA production without H or chain expression in developing B cells. Nat. Immunol. 2:625–631.

    Article  CAS  PubMed  Google Scholar 

  • Macpherson, A. J., and Uhr T. (2004). Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:1662–1665.

    Article  CAS  PubMed  Google Scholar 

  • Medina, F., Segundo, C., Campos-Caro, A., González-García, I., and Brieva, J. A. (2002). The heterogeneity shown by human plasma cells from tonsil, blood, and bone marrow reveals graded stages of increasing maturity, but local profiles of adhesion molecule expression. Blood 99:2154–2161.

    Article  CAS  PubMed  Google Scholar 

  • Medina, F., Segundo, C., Campos-Caro, A., Salcedo, I., Garcia-Poley, A., and Brieva, J. A. (2003). Isolation, maturational level, and functional capacity of human colon lamina propria plasma cells. Gut 52:383–389.

    Article  CAS  PubMed  Google Scholar 

  • Mel, D. M., Terzin, A. L., and Vuksic, L. (1965). Studies on vaccination against bacillary dysentery. 3. Effective oral immunization against Shigella flexneri 2a in a field trial. Bull. World Health Org. 32:647–655.

    CAS  PubMed  Google Scholar 

  • Michetti, P., Mahan, M. J., Slauch, J. M., Mekalanos, J. J., and Neutra, M. R. (1992). Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium. Infect. Immun. 60:1786–1792.

    Google Scholar 

  • Moghaddami, M., Cummins, A., and Mayrhofer, G. (1998). Lymphocyte-filled villi: Comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology 115:1414–1425.

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., and Honjo, T. (2000). Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563.

    Article  CAS  PubMed  Google Scholar 

  • Murakami, M., Tsubata, T., Shinkura, R., Nisitani, S., Okamoto, M., Yoshioka, H., Usui, T., Miyawaki, S., and Honjo T. (1994). Oral administration of lipopolysaccharides activates B-1 cells in the peritoneal cavity and lamina propria of the gut and induces autoimmune symptoms in an autoantibody transgenic mouse. J. Exp. Med. 180:111–121.

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa, S., Honda, K., Vieira, P., and Yoshida, H. (2003). Organogenesis of peripheral lymphoid organs. Immunol. Rev. 195:72–80.

    Article  CAS  PubMed  Google Scholar 

  • Ogra, P. L., and Karzon, D. T. (1969). Distribution of poliovirus antibody in serum, nasopharynx and alimentary tract following segmental immunization of lower alimentary tract with poliovaccine. J. Immunol. 102:1423–1430.

    CAS  PubMed  Google Scholar 

  • O’Leary, A. D., and Sweeney, E. C. (1986). Lymphoglandular complexes of the colon: Structure and distribution. Histopathology 10:267–283.

    Article  PubMed  Google Scholar 

  • Owen, R. L., and Jones, A. L. (1974). Epithelial cell specialization within human Peyer’s patches: An ultrastructural study of intestinal lymphoid follicles. Gastroenterology 66:189–203.

    CAS  PubMed  Google Scholar 

  • Pan, J., Kunkel, E. J., Gosslar, U., Lazarus, N., Langdon, P., Broadwell, K., Vierra, M. A., Genovese, M. C., Butcher, E. C., and Soler, D. (2000). A novel chemokine ligand for CCR10 and CCR3 expressed by epithelial cells in mucosal tissues. J. Immunol. 165:2943–2949.

    CAS  PubMed  Google Scholar 

  • Pappo, J., and Owen, R. L. (1988). Absence of secretory component expression by epithelial cells overlying rabbit gut-associated lymphoid tissue. Gastroenterology 95:1173–1177.

    CAS  PubMed  Google Scholar 

  • Pascual, V., Liu, Y.-J., Magalski, A., de Bouteiller, O., Banchereau, J., and Capra, J. D. (1994). Analysis of somatic mutation in five B cell subsets of human tonsil. J. Exp. Med. 180:329–339.

    Article  CAS  PubMed  Google Scholar 

  • Phalipon, A., Kaufmann, M., Michetti, P., Cavaillon, J.-M., Huerre, M., Sansonetti, P., and Kraehenbuhl, J.-P. (1995). Monoclonal immunoglobulin A antibody directed against serotype-specific epitope of Shigella flexneri lipopolysaccharide protects against murine experimental shigellosis. J. Exp. Med. 182:769–778.

    Article  CAS  PubMed  Google Scholar 

  • Rescigno, M., Urbano. M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., Granucci, F., Kraehenbuhl, J.-P., and Ricciardi-Castagnoli, P. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2:361–367.

    Article  CAS  PubMed  Google Scholar 

  • Reynaud, C.-A., Garcia, C., Hein, W. R., and Weill, J.-C. (1995). Hypermutation generating the sheep immunoglobulin repertoire is an antigen-independent process. Cell 80:115–125.

    Article  CAS  PubMed  Google Scholar 

  • Salmi, M., and Jalkanen, S. (2005). Lymphocyte homing to the gut: Attraction, adhesion, and commitment. Immunol. Rev. 206:100–113.

    Article  CAS  PubMed  Google Scholar 

  • Shikina, T., Hiroi, T., Iwatani, K., Jang, M. H., Fukuyama, S., Tamura, M., Kubo, T., Ishikawa, H., and Kiyono, H. (2004). IgA class switch occurs in the organized nasopharynx- and gut-associated lymphoid tissue, but not in the diffuse lamina propria of airways and gut. J Immunol. 172:6259–6264.

    CAS  PubMed  Google Scholar 

  • Sierro, F., Pringault, E., Assman, P. S., Kraehenbuhl, J.-P., and Debard, N. (2000). Transient expression of M-cell phenotype by enterocyte-like cells of the follicle-associated epithelium of mouse Peyer’s patches. Gastroenterology 119:734–743.

    Article  CAS  PubMed  Google Scholar 

  • Simmons, D. A., and Romanowska, E. (1987). Structure and biology of Shigella flexneri O antigens. J. Med. Microbiol. 23:289–302.

    Article  CAS  PubMed  Google Scholar 

  • Smith, M. W. (1985). Selective expression of brush border hydrolases by mouse Peyer’s patch and jejunal villus enterocytes. J. Cell. Physiol. 124:219–225.

    Article  CAS  PubMed  Google Scholar 

  • Spencer, J., Finn, T., and Isaacson, P. G. (1986a) Human Peyer’s patches: An immunohistochemical study. Gut 27:405–410.

    Article  CAS  PubMed  Google Scholar 

  • Spencer, J., MacDonald, T. T., Finn, T., and Isaacson, P. G. (1986b). The development of gut associated lymphoid tissue in the terminal ileum of fetal human intestine. Clin. Exp. Immunol. 64:536–543.

    CAS  PubMed  Google Scholar 

  • Spencer, J., MacDonald. T. T., and Isaacson. P. G. (1987). Heterogeneity of non-lymphoid cells expressing HLA-D region antigens in human fetal gut. Clin. Exp. Immunol. 67:415–424.

    CAS  PubMed  Google Scholar 

  • Tanaka, Y., Imai, T., Baba, M., Ishikawa, I., Uehira, M., Nomiyama, H., and Yoshie, O. (1999). Selective expression of liver and activation-regulated chemokine (LARC) in intestinal epithelium in mice and humans. Eur. J. Immunol. 29:633–642.

    Article  CAS  PubMed  Google Scholar 

  • Tangye, S. G., Ferguson, A., Avery, D. T., Ma, C. S., and Hodgkin P. D. (2002). Isotype switching by human B cells is division-associated and regulated by cytokines. Isotype switching by human B cells is division-associated and regulated by cytokines. J. Immunol. 169:4298–4306.

    CAS  PubMed  Google Scholar 

  • Thurnheer, M. C., Zuercher, A. W., Cebra, J. J., and Bos, N. A. (2003). B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allotype chimeric mice. J. Immunol. 170:4564–4571.

    CAS  PubMed  Google Scholar 

  • Viau, M., and Zouali, M. (2005). B-lymphocytes, innate immunity, and autoimmunity. Clin. Immunol. 114:17–26.

    Article  CAS  PubMed  Google Scholar 

  • Wijburg, O. L. C., Uren, T. K., Simpfendorfer, K., Johansen, F.-E., Brandtzaeg, P., and Strugnell, R.A. (2006). Innate secretory antibodies protect against natural Salmonella typhimurium infection. J. Exp. Med. 203:21–26.

    Article  CAS  PubMed  Google Scholar 

  • Xu-Amano, J., Kiyono, H., Jackson, R. J., Staats, H. F., Fujihashi, K., Burrows, P. D., Elson, C. O., Pillai, S., and McGhee, J. R. (1993). Helper T cell subsets for immunoglobulin A responses: Oral immunization with tetanus toxoid and cholera toxin as adjuvant selectively induces Th2 cells in mucosa associated tissues. J. Exp. Med. 178:1309–1320.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka, T., Helgeland, L., Farstad, I. N., Fukushima, H., Midtvedt, T., and Brandtzaeg, P. (2003). Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer’s patches. J. Immunol. 170:816–822.

    CAS  PubMed  Google Scholar 

  • Yamanaka, T., Straumfors, A., Morton, H., Fausa, O., Brandtzaeg, P., and Farstad, I. N. (2001). M cell pockets of human Peyer’s patches are specialized extensions of germinal centers. Eur. J. Immunol. 31:107–117.

    Article  CAS  PubMed  Google Scholar 

  • Zan, H., Cerutti, A., Dramitinos, P., Schaffer, A., and Casali, P. (1998). CD40 engagement triggers switching to IgA1 and IgA2 in human B cells through induction of endogenous TGF-e: Evidence for TGF-: but not IL-10-dependent direct SµµSS and sequential SµµSS, S, SS DNA recombination. J. Immunol. 161:5217–5225.

    CAS  PubMed  Google Scholar 

  • Zhao, X., Sato, A., Dela Cruz, C. S., Linehan, M., Luegering, A., Kucharzik, T., Shirakawa A. K., Marquez, G., Farber, J. M., Williams, I., and Iwasaki, A. (2003). CCL9 is secreted by the follicle-associated epithelium and recruits dome region Peyer’s patch CD11b+ dendritic cells. J. Immunol. 171:2797–2803.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Spencer, J., Boursier, L., Edgeworth, J.D. (2007). IgA Plasma Cell Development. In: Kaetzel, C.S. (eds) Mucosal Immune Defense: Immunoglobulin A. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72232-0_2

Download citation

Publish with us

Policies and ethics