Advertisement

Recombinant IgA Antibodies

  • Esther M. Yoo
  • Koteswara R. Chintalacharuvu
  • Sherie L. Morrison

The production of monoclonal antibodies and the development of recombinant antibody technology have made antibodies one of the largest classes of drugs in development for prophylactic, therapeutic and diagnostic purposes. Currently, all of the Food and Drug Administration (FDA)- approved antibodies are immunoglobulin Gs (IgGs). However, more than 95%of the infections are initiated at the mucosal surfaces, where IgA is the primary immune effector antibody.

Keywords

Insect Cell Chinese Hamster Ovary Cell Secretory Component Human IgA1 Recombinant Antibody Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkin, J. D., Pleass, R. J., Owens, R. J., and Woof, J. M. (1996). Mutagenesis of the human IgA1 heavy chain tailpiece that prevents dimer assembly. J. Immunol. 157:156–159.PubMedGoogle Scholar
  2. Baenziger, J. U. (1979). Structure of the oligosaccharide of human J chain. J. Biol. Chem. 254:4063–4071.PubMedGoogle Scholar
  3. Bakker, H., Bardor, M., Molthoff, J. W., Gomord, V., Elbers, I., Stevens, L. H., Jordi, W., Lommen, A., Faye, L., Lerouge, P., and Bosch, D. (2001). Galactose-extended glycans of antibodies produced by transgenic plants. Proc. Natl. Acad. Sci. USA 98:2899–2904.PubMedGoogle Scholar
  4. Basset, C., Devauchelle, V., Durand, V., Jamin, C., Pennec, Y. L., Youinou, P., and Dueymes, M. (1999). Glycosylation of immunoglobulin A influences its receptor binding. Scand. J. Immunol. 50:572–579.PubMedGoogle Scholar
  5. Batten, M. R., Senior, B. W., Kilian, M., and Woof, J. M. (2003). Amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by streptococcal IgA1 proteases. Infect. Immun. 71:1462–1469.PubMedGoogle Scholar
  6. Baum, R. P., Niesen, A., Hertel, A., Nancy, A., Hess, H., Donnerstag, B., Sykes, T. R., Sykes, C. J., Suresh, M. R., Noujaim, A. A., et al. (1994). Activating anti-idiotypic human anti-mouse antibodies for immunotherapy of ovarian carcinoma. Cancer 73:1121–1125.PubMedGoogle Scholar
  7. Berdoz, J., Blanc, C. T., Reinhardt, M., Kraehenbuhl, J. P., and Corthesy, B. (1999). In vitro comparison of the antigen-binding and stability properties of the various molecular forms of IgA antibodies assembled and produced in CHO cells. Proc. Natl. Acad. Sci. USA 96:3029–3034.PubMedGoogle Scholar
  8. Berdoz, J., and Corthesy, B. (2004). Human polymeric IgA is superior to IgG and single-chain Fv of the same monoclonal specificity to inhibit urease activity associated with Helicobacter pylori. Mol. Immunol. 41:1013–1022.PubMedGoogle Scholar
  9. Berdoz, J., Monath, T. P., and Kraehenbuhl, J. P. (1995). Specific amplification by PCR of rearranged genomic variable regions of immunoglobulin genes from mouse hybridoma cells. PCR Methods Appl. 4:256–264.PubMedGoogle Scholar
  10. Biswas, S., Saxena, Q. B., Roy, A., and Kubilan, L. (1995). Naturally occurring Plasmodium specific IgA antibodies in humans from a malaria endemic area. J. Biosci. 20:453–460.Google Scholar
  11. Boel, E., Verlaan, S., Poppelier, M. J., Westerdaal, N. A., Van Strijp, J. A., and Logtenberg, T. (2000). Functional human monoclonal antibodies of all isotypes constructed from phage display library-derived single-chain Fv antibody fragments. J. Immunol. Methods 239:153–166.PubMedGoogle Scholar
  12. Braathen, R., Sorensen, V., Brandtzaeg, P., Sandlie, I., and Johansen, F. E. (2002). The carboxyl-terminal domains of IgA and IgM direct isotype-specific polymerization and interaction with the polymeric immunoglobulin receptor. J. Biol. Chem. 277:42, 755–42, 762.Google Scholar
  13. Brandtzaeg, P., and Prydz, H. (1984). Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 311:71–73.PubMedGoogle Scholar
  14. Breitz, H. B., Weiden, P. L., Vanderheyden, J. L., Appelbaum, J. W., Bjorn, M. J., Fer, M. F., Wolf, S. B., Ratliff, B. A., Seiler, C. A., Foisie, D. C., et al. (1992). Clinical experience with rhenium-186-labeled monoclonal antibodies for radioimmunotherapy: results of phase I trials. J. Nucl. Med. 33:1099–1109.PubMedGoogle Scholar
  15. Brooks, D., Taylor, C., Dos Santos, B., Linden, H., Houghton, A., Hecht, T. T., Kornfeld, S., and Taetle, R. (1995). Phase Ia trial of murine immunoglobulin A antitransferrin receptor antibody 42/6. Clin. Cancer Res. 1:1259–1265.PubMedGoogle Scholar
  16. Bruggemann, M., Williams, G. T., Bindon, C. I., Clark, M. R., Walker, M. R., Jefferis, R., Waldmann, H., and Neuberger, M. S. (1987). Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J. Exp. Med. 166:1351–1361.PubMedGoogle Scholar
  17. Buchegger, F., Pfister, C., Fournier, K., Prevel, F., Schreyer, M., Carrel, S., and Mach, J. P. (1989). Ablation of human colon carcinoma in nude mice by 131I-labeled monoclonal anti-carcinoembryonic antigen antibody F(ab’) 2 fragments. J. Clin. Invest. 83:1449–1456.PubMedGoogle Scholar
  18. Burtin, P., von Kleist, S., Sabine, M. C., and King, M. (1973). Immunohistological localization of carcinoembryonic antigen and nonspecific cross-reacting antigen in gastrointestinal normal and tumoral tissues. Cancer Res. 33:3299–3305.PubMedGoogle Scholar
  19. Butters, T. D., Hughes, R. C., and Vischer, P. (1981). Steps in the biosynthesis of mosquito cell membrane glycoproteins and the effects of tunicamycin. Biochim. Biophys. Acta 640:672–686.PubMedGoogle Scholar
  20. Campbell, M. J., Zelenetz, A. D., Levy, S., and Levy, R. (1992). Use of family specific leader region primers for PCR amplification of the human heavy chain variable region gene repertoire. Mol. Immunol. 29:193–203.PubMedGoogle Scholar
  21. Carayannopoulos, L., Hexham, J. M., and Capra, J. D. (1996). Localization of the binding site for the monocyte immunoglobulin (Ig) A-Fc receptor (CD89) to the domain boundary between Calpha2 and Calpha3 in human IgA1. J. Exp. Med. 183:1579–1586.PubMedGoogle Scholar
  22. Carayannopoulos, L., Max, E. E., and Capra, J. D. (1994). Recombinant human IgA expressed in insect cells. Proc. Natl. Acad. Sci. USA 91:8348–8352.PubMedGoogle Scholar
  23. Casadevall, A., Dadachova, E., and Pirofski, L. A. (2004). Passive antibody therapy for infectious diseases. Nat. Rev. Microbiol. 2:695–703.PubMedGoogle Scholar
  24. Chargelegue, D., Vine, N. D., van Dolleweerd, C. J., Drake, P. M., and Ma, J. K. (2000). A murine monoclonal antibody produced in transgenic plants with plant-specific glycans is not immunogenic in mice. Transgenic Res. 9:187–194.PubMedGoogle Scholar
  25. Chintalacharuvu, K. R., Chuang, P. D., Dragoman, A., Fernandez, C. Z., Qiu, J., Plaut, A. G., Trinh, K. R., Gala, F. A., and Morrison, S. L. (2003). Cleavage of the human immunoglobulin A1 (IgA1) hinge region by IgA1 proteases requires structures in the Fc region of IgA. Infect. Immun. 71:2563–2570.PubMedGoogle Scholar
  26. Chintalacharuvu, K. R., and Morrison, S. L. (1996). Residues critical for H-L disulfide bond formation in human IgA1 and IgA2. J. Immunol. 157:3443–3449.PubMedGoogle Scholar
  27. Chintalacharuvu, K. R., and Morrison, S. L. (1997). Production of secretory immunoglobulin A by a single mammalian cell. Proc. Natl. Acad. Sci. USA 94:6364–6368.PubMedGoogle Scholar
  28. Chintalacharuvu, K. R., Raines, M., and Morrison, S. L. (1994). Divergence of human alpha-chain constant region gene sequences. A novel recombinant alpha 2 gene. J. Immunol. 152:5299–5304.PubMedGoogle Scholar
  29. Chintalacharuvu, K. R., Vuong, L. U., Loi, L. A., Larrick, J. W., and Morrison, S. L. (2001). Hybrid IgA2/IgG1 antibodies with tailor-made effector functions. Clin. Immunol. 101:21–31.PubMedGoogle Scholar
  30. Chintalacharuvu, K. R., Yu, L. J., Bhola, N., Kobayashi, K., Fernandez, C. Z., and Morrison, S. L. (2002). Cysteine residues required for the attachment of the light chain in human IgA2. J. Immunol. 169:5072–5077.PubMedGoogle Scholar
  31. Chuang, P. D., and Morrison, S. L. (1997). Elimination of N-linked glycosylation sites from the human IgA1 constant region: effects on structure and function. J. Immunol. 158:724–732.PubMedGoogle Scholar
  32. Clynes, R. A., Towers, T. L., Presta, L. G., and Ravetch, J. V. (2000). Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat. Med. 6:443–446.PubMedGoogle Scholar
  33. Coloma, M. J., Hastings, A., Wims, L. A., and Morrison, S. L. (1992). Novel vectors for the expression of antibody molecules using variable regions generated by polymerase chain reaction. J. Immunol. Methods 152:89–104.PubMedGoogle Scholar
  34. Corthesy, B., Kaufmann, M., Phalipon, A., Peitsch, M., Neutra, M. R., and Kraehenbuhl, J. P. (1996). A pathogen-specific epitope inserted into recombinant secretory immunoglobulin A is immunogenic by the oral route. J. Biol. Chem. 271:33, 670–677.Google Scholar
  35. Cottet, S., and Corthesy, B. (1997). Cellular processing limits the heterologous expression of secretory component in mammalian cells. Eur. J. Biochem. 246:23–31.PubMedGoogle Scholar
  36. Crottet, P., and Corthesy, B. (1998). Secretory component delays the conversion of secretory IgA into antigen-binding competent F(ab’) 2: A possible implication for mucosal defense. J. Immunol. 161:5445–5453.PubMedGoogle Scholar
  37. Crottet, P., Cottet, S., and Corthesy, B. (1999). Expression, purification and biochemical characterization of recombinant murine secretory component: a novel tool in mucosal immunology. Biochem. J. 341(Pt. 2):299–306.PubMedGoogle Scholar
  38. Dallas, S. D., and Rolfe, R. D. (1998). Binding of Clostridium difficile toxin A to human milk secretory component. J. Med. Microbiol. 47:879–888.PubMedGoogle Scholar
  39. Davies, J., Jiang, L., Pan, L. Z., LaBarre, M. J., Anderson, D., and Reff, M. (2001). Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for Fc gamma RIII. Biotechnol. Bioeng. 74:288–294.PubMedGoogle Scholar
  40. Davis, R., Schooley, K., Rasmussen, B., Thomas, J., and Reddy, P. (2000). Effect of PDI overexpression on recombinant protein secretion in CHO cells. Biotechnol. Prog. 16:736–743.PubMedGoogle Scholar
  41. Dechant, M., Vidarsson, G., Stockmeyer, B., Repp, R., Glennie, M. J., Gramatzki, M., van De Winkel, J. G., and Valerius, T. (2002). Chimeric IgA antibodies against HLA class II effectively trigger lymphoma cell killing. Blood 100:4574–4580.PubMedGoogle Scholar
  42. De Groot, N., Van Kuik-Romeijn, P., Lee, S. H., and De Boer, H. A. (2000). Increased immunoglobulin A levels in milk by over-expressing the murine polymeric immunoglobulin receptor gene in the mammary gland epithelial cells of transgenic mice. Immunology 101:218–224.PubMedGoogle Scholar
  43. Devito, C., Broliden, K., Kaul, R., Svensson, L., Johansen, K., Kiama, P., Kimani, J., Lopalco, L., Piconi, S., Bwayo, J. J., et al. (2000a). Mucosal and plasma IgA from HIV-1-exposed uninfected individuals inhibit HIV-1 transcytosis across human epithelial cells. J. Immunol. 165:5170–5176.PubMedGoogle Scholar
  44. Devito, C., Hinkula, J., Kaul, R., Lopalco, L., Bwayo, J. J., Plummer, F., Clerici, M., and Broliden, K. (2000b). Mucosal and plasma IgA from HIV-exposed seronegative individuals neutralize a primary HIV-1 isolate. AIDS 14:1917–1920.PubMedGoogle Scholar
  45. Elbers, I. J., Stoopen, G. M., Bakker, H., Stevens, L. H., Bardor, M., Molthoff, J. W., Jordi, W. J., Bosch, D., and Lommen, A. (2001). Influence of growth conditions and developmental stage on N-glycan heterogeneity of transgenic immunoglobulin G and endogenous proteins in tobacco leaves. Plant Physiol. 126:1314–1322.PubMedGoogle Scholar
  46. Favre, L. I., Spertini, F., and Corthesy, B. (2003). Simplified procedure to recover recombinant antigenized secretory IgA to be used as a vaccine vector. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 786:143–151.Google Scholar
  47. Fukuta, K., Abe, R., Yokomatsu, T., Omae, F., Asanagi, M., and Makino, T. (2000). Control of bisecting GlcNAc addition to N-linked sugar chains. J. Biol. Chem. 275:23, 456–461.Google Scholar
  48. Galili, U. (1989). Abnormal expression of alpha-galactosyl epitopes in man. A trigger for autoimmune processes? Lancet 2:358–361.PubMedGoogle Scholar
  49. Gavilondo-Cowley, J. V., Coloma, M. J., Vazquez, J., Ayala, M., Macias, A., Fry, K. E., and Larrick, J. W. (1990). Specific amplification of rearranged immunoglobulin variable region genes from mouse hybridoma cells. Hybridoma 9:407–417.PubMedGoogle Scholar
  50. Gillies, S. D., Lo, K. M., and Wesolowski, J. (1989). High-level expression of chimeric antibodies using adapted cDNA variable region cassettes. J. Immunol. Methods 125:191–202.PubMedGoogle Scholar
  51. Griffiss, G. M., and Goroff, D. K. (1983). IgA blocks IgM and IgG-initiated immune lysis by separate molecular mechanisms. J. Immunol. 130:2882–2885.PubMedGoogle Scholar
  52. Gupta, N., Arthos, J., Khazanie, P., Steenbeke, T. D., Censoplano, N. M., Chung, E. A., Cruz, C. C., Chaikin, M. A., Daucher, M., Kottilil, S., Mavilio, D., Schuck, P., Sun, P. D., Rabin, R. L., Radaev, S., Van Ryk, D., Cicala, C., and Fauci, A. S. (2005). Targeted lysis of HIV-infected cells by natural killler cells armed and triggered by a recombinant immunoglobulin fusion protein: Implication for immunotherapy. Vaccine 332:491–497.Google Scholar
  53. Hemming, V. G., Rodriguez, W., Kim, H. M., Brandt, C. D., Parrott, R. H., Burch, B., Prince, G. A., Baron, P. A., Fink, R. J., and Reaman, G. (1987). Intravenous immunoglobulin treatment of respiratory syncytial virus infection in infants and young children. Antimicrob. Agents Chemother. 31:1882–1886.PubMedGoogle Scholar
  54. Herr, A. B., Ballister, E. R., and Bjorkman, P. J. (2003). Insights into IgA-mediated immune response from the cystal structures of human Fc alpha RI and its complex with IgA1-Fc. Nature 423:614–620.PubMedGoogle Scholar
  55. Hexham, J. M., White, K. D., Carayannopoulos, L. N., Mandecki, W., Brisette, R., Yang, Y. S., and Capra, J. D. (1999). A human immunoglobulin (Ig) A C alpha 3 domain motif directs polymeric Ig receptor-mediated secretion. J. Exp. Med. 189:747–752.PubMedGoogle Scholar
  56. Hills, A. E., Patel, A., Boyd, P., and James, D. C. (2001). Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Biotechnol. Bioeng. 75:239–251.PubMedGoogle Scholar
  57. Hirt, R. P., Hughes, G. J., Frutiger, S., Michetti, P., Perregaux, C., Poulain-Godefroy, O., Jeanguenat, N., Neutra, M. R., and Kraehenbuhl, J. P. (1993). Transcytosis of the polymeric Ig receptor requires phosphorylation of serine 664 in the absence but not the presence of dimeric IgA. Cell 74:245–255.PubMedGoogle Scholar
  58. Houdebine, L. M. (2000). Transgenic animal bioreactors. Transgenic Res. 9:305–320.PubMedGoogle Scholar
  59. Hughes, G. J., Reason, A. J., Savoy, L., Jaton, J., and Frutiger-Hughes, S. (1999). Carbohydrate moieties in human secretory component. Biochim. Biophys. Acta 1434:86–93.PubMedGoogle Scholar
  60. Huls, G., Heijnen, I. A., Cuomo, E., van der Linden, J., Boel, E., van de Winkel, J. G., and Logtenberg, T. (1999a). Antitumor immune effector mechanisms recruited by phage display-derived fully human IgG1 and IgA1 monoclonal antibodies. Cancer Res. 59:5778–5784.PubMedGoogle Scholar
  61. Huls, G. A., Heijnen, I. A., Cuomo, M. E., Koningsberger, J. C., Wiegman, L., Boel, E., van der Vuurst de Vries, A. R., Loyson, S. A., Helfrich, W., van Berge Henegouwen, G. P., van Meijer, M., de Kruif, J., and Logtenberg, T. (1999b). A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments. Nat. Biotechnol. 17:276–281.PubMedGoogle Scholar
  62. Janoff, E. N., Fasching, C., Orenstein, J. M., Rubins, J. B., Opstad, N. L., and Dalmasso, A. P. (1999). Killing of Streptococcus pneumoniae by capsular polysaccharide-specific polymeric IgA, complement, and phagocytes. J. Clin. Invest. 104:1139–1147.PubMedGoogle Scholar
  63. Jarvis, D. L., and Finn, E. E. (1995). Biochemical analysis of the N-glycosylation pathway in baculovirus-infected lepidopteran insect cells. Virology 212:500–511.PubMedGoogle Scholar
  64. Jarvis, D. L., and Finn, E. E. (1996). Modifying the insect cell N-glycosylation pathway with immediate early baculovirus expression vectors. Nat. Biotechnol. 14:1288–1292.PubMedGoogle Scholar
  65. Johansen, F. E., Braathen, R., and Brandtzaeg, P. (2001). The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA. J. Immunol. 167:5185–5192.PubMedGoogle Scholar
  66. Johansen, F. E., Natvig Norderhaug, I., Roe, M., Sandlie, I., and Brandtzaeg, P. (1999). Recombinant expression of polymeric IgA: Incorporation of J chain and secretory component of human origin. Eur. J. Immunol. 29:1701–1708.PubMedGoogle Scholar
  67. Kaul, R., Trabattoni, D., Bwayo, J. J., Arienti, D., Zagliani, A., Mwangi, F. M., Kariuki, C., Ngugi, E. N., MacDonald, K. S., Ball, T. B., Clerici, M., and Plummer, F. A. (1999). HIV-1-specific mucosal IgA in a cohort of HIV-1-resistant Kenyan sex workers. AIDS 13:23–29.PubMedGoogle Scholar
  68. Knight, K. L., Suter, M., and Becker, R. S. (1988). Genetic engineering of bovine Ig. Construction and characterization of hapten-binding bovine/murine chimeric IgE, IgA, IgG1, IgG2, and IgG3 molecules. J. Immunol. 140:3654–3659.PubMedGoogle Scholar
  69. Kozlowski, P. A., and Neutra, M. R. (2003). The role of mucosal immunity in preventing of HIV transmission. Curr. Mol. Med. 3:217–228.PubMedGoogle Scholar
  70. Larrick, J. W., Danielsson, L., Brenner, C. A., Abrahamson, M., Fry, K. E., and Borrebaeck, C. A. (1989). Rapid cloning of rearranged immunoglobulin genes from human hybridoma cells using mixed primers and the polymerase chain reaction. Biochem. Biophys. Res. Commun. 160:1250–1256.PubMedGoogle Scholar
  71. Larrick, J. W., Yu, L., Naftzger, C., Jaiswal, S., and Wycoff, K. (2001). Production of secretory IgA antibodies in plants. Biomol. Eng. 18:87–94.PubMedGoogle Scholar
  72. Lee, E. U., Roth, J., and Paulson, J. C. (1989). Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of beta-galactoside alpha 2, 6-sialyltransferase. J. Biol. Chem. 264:13, 848–855.Google Scholar
  73. Leke, R. G., Ndansi, R., Southerland, N. J., Quakyi, I. A., and Taylor, D. W. (1992). Identification of anti-Plasmodium falciparum antibodies in human breast milk. Scand. J. Immunol. 11(Suppl.):17–22.Google Scholar
  74. Lifely, M. R., Hale, C., Boyce, S., Keen, M. J., and Phillips, J. (1995). Glycosylation and biological activity of CAMPATH-1H expressed in different cell lines and grown under different culture conditions. Glycobiology 5:813–822.PubMedGoogle Scholar
  75. Lindh, E. (1975). Increased resistance of immunoglobulin A dimers to proteolytic degradation after binding of secretory component. J. Immunol. 114:284–286.PubMedGoogle Scholar
  76. Lo, D., Pursel, V., Linton, P. J., Sandgren, E., Behringer, R., Rexroad, C., Palmiter, R. D., and Brinster, R. L. (1991). Expression of mouse IgA by transgenic mice, pigs and sheep. Eur. J. Immunol. 21:1001–1006.PubMedGoogle Scholar
  77. Lullau, E., Heyse, S., Vogel, H., Marison, I., von Stockar, U., Kraehenbuhl, J. P., and Corthesy, B. (1996). Antigen binding properties of purified immunoglobulin A and reconstituted secretory immunoglobulin A antibodies. J. Biol. Chem. 271:16, 300–16, 309.Google Scholar
  78. Lund, J., Takahashi, N., Hindley, S., Tyler, R., Goodall, M., and Jefferis, R. (1993). Glycosylation of human IgG subclass and mouse IgG2b heavy chains secreted by mouse J558L transfectoma cell lines as chimeric antibodies. Hum. Antibodies Hybridomas 4:20–25.PubMedGoogle Scholar
  79. Lund, J., Tanaka, T., Takahashi, N., Sarmay, G., Arata, Y., and Jefferis, R. (1990). A protein structural change in aglycosylated IgG3 correlates with loss of huFc gamma R1 and huFc gamma R111 binding and/or activation. Mol. Immunol. 27:1145–1153.PubMedGoogle Scholar
  80. Ma, J. K., Hiatt, A., Hein, M., Vine, N. D., Wang, F., Stabila, P., van Dolleweerd, C., Mostov, K., and Lehner, T. (1995). Generation and assembly of secretory antibodies in plants. Science 268:716–719.PubMedGoogle Scholar
  81. Ma, J. K., Hikmat, B. Y., Wycoff, K., Vine, N. D., Chargelegue, D., Yu, L., Hein, M. B., and Lehner, T. (1998). Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat. Med. 4:601–606.PubMedGoogle Scholar
  82. Mantis, N. J., Farrant, S. A., and Mehta, S. (2004). Oligosaccharide side chains on human secretory IgA serve as receptors for ricin. J. Immunol. 172:6838–6845.PubMedGoogle Scholar
  83. Martin, B. M., Tsuji, S., LaMarca, M. E., Maysak, K., Eliason, W., and Ginns, E. I. (1988). Glycosylation and processing of high levels of active human glucocerebrosidase in invertebrate cells using a baculovirus expression vector. DNA 7:99–106.PubMedGoogle Scholar
  84. Mattu, T. S., Pleass, R. J., Willis, A. C., Kilian, M., Wormald, M. R., Lellouch, A. C., Rudd, P. M., Woof, J. M., and Dwek, R. A. (1998). The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fc alpha receptor interactions. J. Biol. Chem. 273:2260–2272.PubMedGoogle Scholar
  85. McKinney, K. L., Dilwith, R., and Belfort, G. (1995). Optimizing antibody production in batch hybridoma cell culture. J. Biotechnol. 40:31–48.PubMedGoogle Scholar
  86. Merry, A. H., Morton, C., Bruce, J., Kerr, M., and Woof, J. M. (1992). Glycosylation of recombinant chimeric and human serum IgA1. Biochem. Soc. Trans. 20:92S.PubMedGoogle Scholar
  87. Miller, L. H., Good, M. F., and Milon, G. (1994). Malaria pathogenesis. Science 264:1878–1883.PubMedGoogle Scholar
  88. Monica, T. J., Goochee, C. F., and Maiorella, B. L. (1993). Comparative biochemical characterization of a human IgM produced in both ascites and in vitro cell culture. Biotechnology (NY) 11:512–515.Google Scholar
  89. Monteiro, R. C., Kubagawa, H., and Cooper, C. (1990). Cellular distribution, regulation, and biochemical nature of an Fc alpha receptor in human. J. Exp. Med. 171:597–613.PubMedGoogle Scholar
  90. Morton, H. C., Atkin, J. D., Owens, R. J., and Woof, J. M. (1993). Purification and characterization of chimeric human IgA1 and IgA2 expressed in COS and Chinese hamster ovary cells. J. Immunol. 151:4743–4752.PubMedGoogle Scholar
  91. Motegi, Y., and Kita, H. (1998). Interaction with secretory component stimulates effector functions of human eosinophils but not of neutrophils. J. Immunol. 161:4340–4346.PubMedGoogle Scholar
  92. Nyberg, G. B., Balcarcel, R. R., Follstad, B. D., Stephanopoulos, G., and Wang, D. I. (1999). Metabolic effects on recombinant interferon-gamma glycosylation in continuous culture of Chinese hamster ovary cells. Biotechnol. Bioeng. 62:336–347.PubMedGoogle Scholar
  93. Ogonah, O. W., Freedman, R. B., Jenkins, N., and Rooney, B. C. (1995). Analysis of human interferon-gamma glycoforms produced in baculovirus infected insect cells by matrix assisted laser desorption spectrometry. Biochem. Soc. Trans. 23:100S.PubMedGoogle Scholar
  94. Orlandi, R., Gussow, D. H., Jones, P. T., and Winter, G. (1989). Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 86:3833–3837.PubMedGoogle Scholar
  95. Otten, M. A., Rudolph, E., Dechant, M., Tuk, C. W., Reijmers, R. M., Beelen, R. H., van de Winkel, J. G., and van Egmond, M. (2005). Immature neutrophils mediate tumor cell killing via IgA but not IgG Fc receptors. J. Immunol. 174:5472–5480.PubMedGoogle Scholar
  96. Phalipon, A., Cardona, A., Kraehenbuhl, J. P., Edelman, L., Sansonetti, P. J., and Corthesy, B. (2002). Secretory component: A new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17:107–115.PubMedGoogle Scholar
  97. Pleass, R. J., Dehal, P. K., Lewis, M. J., and Woof, J. M. (2003a). Limited role of charge matching in the interaction of human immunoglobulin A with the immunoglobulin A Fc receptor (Fc alpha RI) CD89. Immunology 109:331–335.PubMedGoogle Scholar
  98. Pleass, R. J., Dunlop, J. I., Anderson, C. M., and Woof, J. M. (1999). Identification of residues in the CH2/CH3 domain interface of IgA essential for interaction with the human fcalpha receptor (FcalphaR) CD89. J. Biol. Chem. 274:23, 508–514.Google Scholar
  99. Pleass, R. J., Ogun, S. A., McGuinness, D. H., van de Winkel, J. G., Holder, A. A., and Woof, J. M. (2003b). Novel antimalarial antibodies highlight the importance of the antibody Fc region in mediating protection. Blood 102:4424–4430.PubMedGoogle Scholar
  100. Preston, M. J., Gerceker, A. A., Reff, M. E., and Pier, G. B. (1998). Production and characterization of a set of mouse-human chimeric immunoglobulin G (IgG) subclass and IgA monoclonal antibodies with identical variable regions specific for Pseudomonas aeruginosa serogroup O6 lipopolysaccharide. Infect. Immun. 66:4137–4142.PubMedGoogle Scholar
  101. Prost, A. C., Menegaux, F., Langlois, P., Vidal, J. M., Koulibaly, M., Jost, J. L., Duron, J. J., Chigot, J. P., Vayre, P., Aurengo, A., Legrand, J. C., Rosselin, G., and Gespach, C. (1998). Differential transferrin receptor density in human colorectal cancer: A potential probe for diagnosis and therapy. Int. J. Oncol. 13:871–875.PubMedGoogle Scholar
  102. Raju, T. S., Briggs, J. B., Borge, S. M., and Jones, A. J. (2000). Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10:477–486.PubMedGoogle Scholar
  103. Raju, T. S., Briggs, J. B., Chamow, S. M., Winkler, M. E., and Jones, A. J. (2001). Glycoengineering of therapeutic glycoproteins: in vitro galactosylation and sialylation of glycoproteins with terminal N-acetylglucosamine and galactose residues. Biochemistry 40:8868–8876.PubMedGoogle Scholar
  104. Ramirez, N., Rodriguez, M., Ayala, M., Cremata, J., Perez, M., Martinez, A., Linares, M., Hevia, Y., Paez, R., Valdes, R., et al. (2003). Expression and characterization of an anti-(hepatitis B surface antigen) glycosylated mouse antibody in transgenic tobacco (Nicotiana tabacum) plants and its use in the immunopurification of its target antigen. Biotechnol. Appl. Biochem. 38:223–230.PubMedGoogle Scholar
  105. Renegar, K. B., Jackson, G. D., and Mestecky, J. (1998a). In vitro comparision of the biologic activities of monoclonal monomeric IgA, polymeric IgA, and secretory IgA. J. Immunol. 160:1219–1223.PubMedGoogle Scholar
  106. Rifai, A., Fadden, K., Morrison, S. L., and Chintalacharuvu, K. R. (2000). The N-glycans determine the differential blood clearance and hepatic uptake of human immunoglobulin (Ig) A1 and IgA2 isotypes. J. Exp. Med. 191:2171–2182.PubMedGoogle Scholar
  107. Rindisbacher, L., Cottet, S., Wittek, R., Kraehenbuhl, J. P., and Corthesy, B. (1995). Production of human secretory component with dimeric IgA binding capacity using viral expression systems. J. Biol. Chem. 270:14, 220–14, 228.Google Scholar
  108. Routier, F. H., Davies, M. J., Bergemann, K., and Hounsell, E. F. (1997). The glycosylation pattern of humanized IgGI antibody (D1.3) expressed in CHO cells. Glycoconj. J. 14:201–207.PubMedGoogle Scholar
  109. Royle, L., Roos, A., Harvey, D. J., Wormald, M. R., van Gijlswijk-Janssen, D., Redwan el, R. M., Wilson, I. A., Daha, M. R., Dwek, R. A., and Rudd, P. M. (2003). Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J. Biol. Chem. 278:20, 140–153.Google Scholar
  110. Russell, M. W., Reinholdt, J., and Kilian, M. (1998). Anti-inflammatory activity of human IgA antibodies and their Fab alpha fragments: Inhibition of IgG-mediated complement activation. Eur. J. Immunol. 24:1211–1217.Google Scholar
  111. Sandin, C., Linse, S., Areschoug, T., Woof, J. M., Reinholdt, J., and Lindahl, G. (2002). Isolation and detection of human IgA using a streptococcal IgA-binding peptide. J. Immunol. 169:1357–1364.PubMedGoogle Scholar
  112. Sauer, P. W., Burky, J. E., Wesson, M. C., Sternard, H. D., and Qu, L. (2000). A high-yielding, generic fed-batch cell culture process for production of recombinant antibodies. Biotechnol. Bioeng. 67:585–597.PubMedGoogle Scholar
  113. Schneider, M., Marison, I. W., and von Stockar, U. (1996). The importance of ammonia in mammalian cell culture. J. Biotechnol. 46:161–185.PubMedGoogle Scholar
  114. Schneiderman, R. D., Hanly, W. C., and Knight, K. L. (1989). Expression of 12 rabbit IgA C alpha genes as chimeric rabbit-mouse IgA antibodies. Proc. Natl. Acad. Sci. USA 86:7561–7565.PubMedGoogle Scholar
  115. Schneiderman, R. D., Lint, T. F., and Knight, K. L. (1990). Activation of the alternative pathway of complement by twelve different rabbit-mouse chimeric transfectoma IgA isotypes. J. Immunol. 145:233–237.PubMedGoogle Scholar
  116. Schwarze, J., Cieslewicz, G., Joetham, A., Sun, L. K., Sun, W. N., Chang, T. W., Hamelmann, E., and Gelfand, E. W. (1998). Antigen-specific immunoglobulin-A prevents increased airway responsiveness and lung eosinophilia after airway challenge in sensitized mice. Am. J. Respir. Crit. Care Med. 158:519–525.PubMedGoogle Scholar
  117. Senior, B. W., Dunlop, J. I., Batten, M. R., Kilian, M., and Woof, J. M. (2000). Cleavage of a recombinant human immunoglobulin A2 (IgA2)–IgA1 hybrid antibody by certain bacterial IgA1 proteases. Infect. Immun. 68:463–469.PubMedGoogle Scholar
  118. Senior, B. W., and Woof, J. M. (2005a). Effect of mutations in the human immunoglobulin A1 (IgA1) hinge on its susceptibility to cleavage by diverse bacterial IgA1 proteases. Infect. Immun. 73:1515–1522.PubMedGoogle Scholar
  119. Senior, B. W., and Woof, J. M. (2005b). The influences of hinge length and composition on the susceptibility of human IgA to cleavage by diverse bacterial IgA1 proteases. J. Immunol. 174:7792–7799.PubMedGoogle Scholar
  120. Shinohara, H., Fan, D., Ozawa, S., Yano, S., Van Arsdell, M., Viner, J. L., Beers, R., Pastan, I., and Fidler, I. J. (2000). Site-specific expression of transferrin receptor by human colon cancer cells directly correlates with eradication by antitransferrin recombinant immunotoxin. Int. J. Oncol. 17:643–651.PubMedGoogle Scholar
  121. Sola, I., Castilla, J., Pintado, B., Sanchez-Morgado, J. M., Whitelaw, C. B., Clark, A. J., and Enjuanes, L. (1998). Transgenic mice secreting coronavirus neutralizing antibodies into the milk. J. Virol. 72:3762–3772.PubMedGoogle Scholar
  122. Stoll, T. S., Muhlethaler, K., von Stockar, U., and Marison, I. W. (1996). Systematic improvement of a chemically-defined protein-free medium for hybridoma growth and monoclonal antibody production. J. Biotechnol. 45:111–123.PubMedGoogle Scholar
  123. Stubbe, H., Berdoz, J., Kraehenbuhl, J. P., and Corthesy, B. (2000). Polymeric IgA is superior to monomeric IgA and IgG carrying the same variable domain in preventing Clostridium difficile toxin A damaging of T84 monolayers. J. Immunol. 164:1952–1960.PubMedGoogle Scholar
  124. Subramanian, K. N., Weismann, L. E., Rhodes, T., Ariagno, R., Sanchez, P. J., Steichen, J., Givner, L. B., Jennings, T. L., Top, F. H. J., Carlin, D., and Connor, E. (1998). Safety, tolerance and pharmacokinetics of a humanized monoclonal antibody to respiratory syncytial virus in premature infants and infants with bronchopulmonary dysplasia. MEDI-493 Study Group 17:110–115.Google Scholar
  125. Sun, L. K., Fung, M. S., Sun, W. N., Sun, C. R., Chang, W. I., and Chang, T. W. (1995). Human IgA monoclonal antibodies specific for a major ragweed pollen antigen. Biotechnology (NY) 13:779–786.Google Scholar
  126. Switzer, I. C., Loney, G. M., Yang, D. S., and Underdown, B. J. (1992). Binding of secretory component to protein 511, a pIgA mouse protein lacking 36 amino acid residues of the C alpha 3 domain. Mol. Immunol. 29:31–35.PubMedGoogle Scholar
  127. Tamer, C. M., Lamm, M. E., Robinson, J. K., Piskurich, J. F., and Kaetzel, C. S. (1995). Comparative studies of transcytosis and assembly of secretory IgA in Madin-Darby canine kidney cells expressing human polymeric Ig receptor. J. Immunol. 155:707–714.PubMedGoogle Scholar
  128. Taylor, A. K., and Wall, R. (1988). Selective removal of alpha heavy-chain glycosylation sites causes immunoglobulin A degradation and reduced secretion. Mol. Cell. Biol. 8:4197–4203.PubMedGoogle Scholar
  129. Terskikh, A., Couty, S., Pelegrin, A., Hardman, N., Hunziker, W., and Mach, J. P. (1994). Dimeric recombinant IgA directed against carcino-embryonic antigen, a novel tool for carcinoma localization. Mol. Immunol. 31:1313–1319.PubMedGoogle Scholar
  130. Tomana, M., Niedermeier, W., Mestecky, J., and Skvaril, F. (1976). The differences in carbohydrate composition between the subclasses of IgA immunoglobulins. Immunochemistry 13:325–328.PubMedGoogle Scholar
  131. Trill, J. J., Shatzman, A. R., and Ganguly, S. (1995). Production of monoclonal antibodies in COS and CHO cells. Curr. Opin. Biotechnol. 6:553–560.PubMedGoogle Scholar
  132. Umana, P., Jean-Mairet, J., Moudry, R., Amstutz, H., and Bailey, J. E. (1999). Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. 17:176–180.PubMedGoogle Scholar
  133. van Egmond, M., van Vuuren, A. J., Morton, H. C., van Spriel, A. B., Shen, L., Hofhuis, F. M., Saito, T., Mayadas, T. N., Verbeek, J. S., and van de Winkel, J. G. (1999). Human immunoglobulin A receptor (Fc.RI, CD89) function in transgenic mice requires both FcR g chain and CR3 (CD11b/CD18). Blood 93:4387–4394.Google Scholar
  134. van Ree, R., Cabanes-Macheteau, M., Akkerdaas, J., Milazzo, J. P., Loutelier-Bourhis, C., Rayon, C., Villalba, M., Koppelman, S., Aalberse, R., Rodriguez, R., Faye, L., and Lerouge, P. (2000). Beta(1, 2)-xylose and alpha(1, 3)-fucose residues have a strong contribution in IgE binding to plant glycoallergens. J. Biol. Chem. 275:11, 451–11, 458.Google Scholar
  135. Vidarsson, G., van Der Pol, W. L., van Den Elsen, J. M., Vile, H., Jansen, M., Duijs, J., Morton, H. C., Boel, E., Daha, M. R., Corthesy, B., and van De Winkel, J. G. (2001). Activity of human IgG and IgA subclasses in immune defense against Neisseria meningitidis serogroup B. J. Immunol. 166:6250–6256.PubMedGoogle Scholar
  136. Weikert, S., Papac, D., Briggs, J., Cowfer, D., Tom, S., Gawlitzek, M., Lofgren, J., Mehta, S., Chisholm, V., Modi, N., et al. (1999). Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat. Biotechnol. 17:1116–1121.PubMedGoogle Scholar
  137. White, K. D., and Capra, J. D. (2002). Targeting mucosal sites by polymeric immunoglobulin receptor-directed peptides. J. Exp. Med. 196:551–555.PubMedGoogle Scholar
  138. Wolbank, S., Kunert, R., Stiegler, G., and Katinger, H. (2003). Characterization of human class-switched polymeric (immunoglobulin M [IgM] and IgA) anti-human immunodeficiency virus type 1 antibodies 2F5 and 2G12. J. Virol. 77:4095–4103.PubMedGoogle Scholar
  139. Yoo, E. M., Coloma, M. J., Trinh, K. R., Nguyen, T. Q., Vuong, L. U., Morrison, S. L., and Chintalacharuvu, K. R. (1999). Structural requirements for polymeric immunoglobulin assembly and association with J chain. J. Biol. Chem. 274:33, 771–777.Google Scholar
  140. Zeitlin, L., Cone, R. A., and Whaley, K. J. (1999). Using monoclonal antibodies to prevent mucosal transmission of epidemic infectious diseases. Emerg. Infect. Dis. 5:54–64.PubMedGoogle Scholar
  141. Zhang, W., and Lachmann, P. J. (1994). Glycosylation of IgA is required for optimal activation of the alternative complement pathway by immune complexes. Immunology 81:137–141.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Esther M. Yoo
    • 1
  • Koteswara R. Chintalacharuvu
    • 1
  • Sherie L. Morrison
    • 1
  1. 1.Department of Microbiology, Immunology and Molecular GeneticsUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations