IgA and Intestinal Homeostasis

  • Per Brandtzaeg
  • Finn-Eirik Johansen

The body is under constant threat of attack by viruses, bacteria, and parasites, and most pathogens use the mucosae as portals of entry. Evolution has therefore provided mammalians with several complex and potent layers of defense. Microorganisms have inhabited Earth for at least 2.5 billion years, and the power of immunity is a result of coevolution in which particularly the commensal bacteria have shaped the body’s defense functions in a state of mutualism (Bäckhed et al., 2005; Hooper and Gordon, 2001). In humans, the critical role of the immune system becomes clinically apparent when it is defective. Thus, inherited and acquired immunodeficiency states, or more subtle immunoregulatory defects, are characterized by increased susceptibility to infectious diseases—sometimes caused by the commensal microbiota that is normally considered to be nonpathogenic (Haller and Jobin, 2004; Sansonetti, 2004; Yan and Polk, 2004).


Celiac Disease Lamina Propria Oral Tolerance Commensal Bacterium Intestinal Homeostasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abreu, M. T., Taylor, K. D., Lin, Y. C., Hang, T., Gaiennie, J., Landers, C. J., Vasiliauskas, E. A., Kam, L. Y., Rojany, M., Papadakis, K. A., Rotter, J. I., Targan, S. R., and Yang, H. (2002). Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology 123:679–688.PubMedGoogle Scholar
  2. Ahmad, T., Armuzzi, A., Bunce, M., Mulcahy-Hawes, K., Marshall, S. E., Orchard, T. R., Crawshaw, J., Large, O., de Silva, A., Cook, J. T., Barnardo, M., Cullen, S., Welsh, K. I., and Jewell, D. P. (2002). The molecular classification of the clinical manifestations of Crohn’s disease. Gastroenterology 122:854–866.PubMedGoogle Scholar
  3. Akira, S. (2003). Mammalian Toll-like receptors. Curr. Opin. Immunol. 15:5–11.PubMedGoogle Scholar
  4. Alfsen, A., Iniguez, P., Bouguyon, E., and Bomsel, M. (2001). Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1. J. Immunol. 166:6257–6265.PubMedGoogle Scholar
  5. Anonymous (1994). A warm chain for breastfeeding (Editorial). Lancet 344:1239–1241.Google Scholar
  6. Arnaboldi, P. M., Behr, M. J., and Metzger, D. W. (2005). Mucosal B cell deficiency in IgA−/− mice abrogates the development of allergic lung inflammation. J. Immunol. 175:1276–1285.PubMedGoogle Scholar
  7. Asahi, Y., Yoshikawa, T., Watanabe, I., Iwasaki, T., Hasegawa, H., Sato, Y., Shimada, S., Nanno, M., Matsuoka, Y., Ohwaki, M., Iwakura, Y., Suzuki, Y., Aizawa, C., Sata, T., Kurata, T., and Tamura, S. (2002). Protection against influenza virus infection in polymeric Ig receptor knockout mice immunized intranasally with adjuvant-combined vaccines. J. Immunol. 168:2930–2938.PubMedGoogle Scholar
  8. Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., and Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science 307:1915–1920.PubMedGoogle Scholar
  9. Bambou, J. C., Giraud, A., Menard, S., Begue, B., Rakotobe, S., Heyman, M., Taddei, F., Cerf-Bensussan, N., and Gaboriau-Routhiau, V. (2004). In vitro and ex vivo activation of the TLR5 signaling pathway in intestinal epithelial cells by a commensal Escherichia coli strain. J. Biol. Chem. 279:42, 984–992.Google Scholar
  10. Barnich, N., Aguirre, J. E., Reinecker, H. C., Xavier, R., and Podolsky, D. K. (2005). Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor–B activation in muramyl dipeptide recognition. J. Cell. Biol. 170:21–26.PubMedGoogle Scholar
  11. Beatty, D. W., Napier, B., Sinclair-Smith, C. C., McCabe, K., and Hughes, E. J. (1983). Secretory IgA synthesis in kwashiorkor. J. Clin. Lab. Immunol. 12:31–36.PubMedGoogle Scholar
  12. Beisner, D. R., Ch’en, I. L., Kolla, R. V., Hoffmann, A., and Hedrick, S. M. (2005). Cutting edge:innate immunity conferred by B cells is regulated by caspase-8. J. Immunol. 175:3469–3473.PubMedGoogle Scholar
  13. Benn, C. S., Wohlfahrt, J., Aaby, P., Westergaard, T., Benfeldt, E., Michaelsen, K. F., Björksten, B., and Melbye, M. (2004). Breastfeeding and risk of atopic dermatitis, by parental history of allergy, during the first 18 months of life. Am. J. Epidemiol. 160:217–223.PubMedGoogle Scholar
  14. Berstad, A. E., and Brandtzaeg, P. (1998). Expression of cell-membrane complement regulatory glycoproteins along the normal and diseased human gastrointestinal tract. Gut 42:522–529.PubMedGoogle Scholar
  15. Beutler, B. (2004). Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430:257–263.PubMedGoogle Scholar
  16. Beutler, B., and Rietschel, E. T. (2003). Timeline: Innate immune sensing and its roots: The story of endotoxin. Nat. Rev. Immunol. 3:169–176.PubMedGoogle Scholar
  17. Bischoff, S. C., Mayer, J. H., and Manns, M. P. (2000). Allergy and the gut. Int. Arch. Allergy Immunol. 121:270–283.PubMedGoogle Scholar
  18. Bižanov, G., Janakova, L., Knapstad, S. E., Karlstad, T., Bakke, H., Haugen, I. L., Haugan, A., Samdal, H. H., and Haneberg, B. (2005). Immunoglobulin-A antibodies in upper airway secretions may inhibit intranasal influenza virus replication in mice but not protect against clinical illness. Scand. J. Immunol. 61:503–510.PubMedGoogle Scholar
  19. Black, R. E., Morris, S. S., and Bryce, J. (2003). Where and why are 10 million children dying every year? Lancet 361:2226–2234.PubMedGoogle Scholar
  20. Böcker, U., Yezerskyy, O., Feick, P., Manigold, T., Panja, A., Kalina, U., Herweck, F., Rossol, S., and Singer, M. V. (2003). Responsiveness of intestinal epithelial cell lines to lipopolysaccharide is correlated with Toll-like receptor 4 but not Toll-like receptor 2 or CD14 expression. Int. J. Colorectal Dis. 18:25–32.PubMedGoogle Scholar
  21. Bollinger, R. R., Everett, M. L., Palestrant, D., Love, S. D., Lin, S. S., and Parker, W. (2003). Human secretory immunoglobulin A may contribute to biofilm formation in the gut. Immunology 109:580–587.PubMedGoogle Scholar
  22. Bomsel, M., Heyman, M., Hocini, H., Lagaye, S., Belec, L., Dupont, C., and Desgranges, C. (1998). Intracellular neutralization of HIV transcytosis across tight epithelial barriers by anti-HIV envelope protein dIgA or IgM. Immunity 9:277–287.PubMedGoogle Scholar
  23. Bos, N. A., Bun, J. C., Popma, S. H., Cebra, E. R., Deenen, G. J., van der Cammen, M. J., Kroese, F. G., and Cebra, J. J. (1996). Monoclonal immunoglobulin A derived from peritoneal B cells is encoded by both germ line and somatically mutated VH genes and is reactive with commensal bacteria. Infect. Immun. 64:616–623.PubMedGoogle Scholar
  24. Bos, N. A., Jiang, H. Q., and Cebra, J. J. (2001). T cell control of the gut IgA response against commensal bacteria. Gut 48:762–764.PubMedGoogle Scholar
  25. Bouma, G., and Strober, W. (2003). The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. 3:521–533.PubMedGoogle Scholar
  26. Boursier, L., Dunn-Walters, D. K., and Spencer, J. (1999). Characteristics of IgVH genes used by human intestinal plasma cells from childhood. Immunology 97:558–564.PubMedGoogle Scholar
  27. Boursier, L., Farstad, I. N., Mellembakken, J. R., Brandtzaeg, P., and Spencer, J. (2002). IgVH gene analysis suggests that peritoneal B cells do not contribute to the gut immune system in man. Eur. J. Immunol. 32:2427–2436.PubMedGoogle Scholar
  28. Boursier, L., Gordon, J. N., Thiagamoorthy, S., Edgeworth, J. D., and Spencer, J. (2005). Human intestinal IgA response is generated in the organized gut-associated lymphoid tissue but not in the lamina propria. Gasteroenterology 128:1879–1889.Google Scholar
  29. Bouvet, J. P., and Fischetti, V. A. (1999). Diversity of antibody-mediated immunity at the mucosal barrier. Infect. Immun. 67:2687–2691.PubMedGoogle Scholar
  30. Brandtzaeg, P. (1974a). Presence of J chain in human immunocytes containing various immunoglobulin classes. Nature 252:418–420.PubMedGoogle Scholar
  31. Brandtzaeg, P. (1974b). Mucosal and glandular distribution of immunoglobulin components: Differential localization of free and bound SC in secretory epithelial cells. J. Immunol. 112:1553–1559.PubMedGoogle Scholar
  32. Brandtzaeg, P. (1983). The secretory immune system of lactating human mammary glands compared with other exocrine organs. Ann. NY Acad. Sci. 30:353–382.Google Scholar
  33. Brandtzaeg, P. (1996). History of oral tolerance and mucosal immunity. Ann. NY Acad. Sci. 778:1–27.PubMedGoogle Scholar
  34. Brandtzaeg, P. (1997). Development of the intestinal immune system and its relation to coeliac disease. In: Mäki, M., Collin, P., and Visakorpi, J. K. (eds.), Coeliac Disease. Proceedings of the Seventh International Symposium on Coeliac Disease. Coeliac Disease Study Group, Institute of Medical Technology, University of Tampere, Tampere, Finland (ISBN 951–44-4293–8), pp. 221–244.Google Scholar
  35. Brandtzaeg, P. (1998). Development and basic mechanisms of human gut immunity. Nutr. Rev. 56:S5–S18.PubMedGoogle Scholar
  36. Brandtzaeg, P. (2001). Nature and function of gastrointestinal antigen-presenting cells. Allergy 56(Suppl. 67):16–20.PubMedGoogle Scholar
  37. Brandtzaeg, P. (2002a). Role of local immunity and breast-feeding in mucosal homeostasis and defence against infections. In: Calder, P. C., Field, C. J., and Gill, H. S. (eds.), Nutrition and Immune Function, Frontiers in Nutritional Science, No. 1. CABI Publishing, Oxon, UK, pp. 273–320.Google Scholar
  38. Brandtzaeg, P. (2002b). The secretory immunoglobulin system: regulation and biological significance. Focusing on mammary glands. In: Davis, M. K., Isaacs, C. E., Hanson, L. Å., and Wright, A. L. (eds.), Integrating Population Outcomes, Biological Mechanisms and Research Methods in the Study of Human Milk and Lactation. Advances in Experimental Medicine Vol. 503. Kluwer Academic/Plenum, New York, pp. 116.Google Scholar
  39. Brandtzaeg, P. (2003). Role of secretory antibodies in the defence against infections. Int. J. Med. Microbiol. 293:3–15.PubMedGoogle Scholar
  40. Brandtzaeg, P., Baekkevold, E. S., Farstad, I. N., Jahnsen, F. L., Johansen, F.-E., Nilsen, E. M., and Yamanaka, T. (1999a). Regional specialization in the mucosal immune system: what happens in the microcompartments? Immunol. Today 20:141–151.PubMedGoogle Scholar
  41. Brandtzaeg, P., Baekkevold, E. S., and Morton, H. C. (2001). From B to A the mucosal way. Nat. Immunol. 2:1093–1094.PubMedGoogle Scholar
  42. Brandtzaeg, P., Baklien, K., Bjerke, K., Rognum, T.O., Scott, H., and Valnes, K. (1987). Nature and properties of the human gastrointestinal immune system. In: Miller, M., and Nicklin, S. (eds.), Immunology of the Gastrointestinal Tract. CRC Press, Boca Raton, FL, pp. 1–85.Google Scholar
  43. Brandtzaeg, P., Farstad, I. N., and Haraldsen, G. (1999b). Regional specialization in the mucosal immune system: primed cells do not always home along the same track. Immunol. Today 20:267–277.PubMedGoogle Scholar
  44. Brandtzaeg, P., Fjellanger, I., and Gjeruldsen, S. T. (1968). Adsorption of immunoglobulin A onto oral bacteria in vivo. J. Bacteriol. 96:242–249.PubMedGoogle Scholar
  45. Brandtzaeg, P., Halstensen, T. S., Huitfeldt, H. S., Krajci, K., Kvale, D., Scott, H., and Thrane, P. S. (1992). Epithelial expression of HLA, secretory component (poly-Ig receptor), and adhesion molecules in the human alimentary tract. Ann. NY Acad. Sci. 664:157–179.PubMedGoogle Scholar
  46. Brandtzaeg, P., Halstensen, T. S., Kett, K., Krajci, P., Kvale, D., Rognum, T. O., Scott, H., and Sollid, L. M. (1989). Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterology 97:1562–1584.PubMedGoogle Scholar
  47. Brandtzaeg, P., and Johansen, F.-E. (2005). Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol. Rev. 206:32–63.PubMedGoogle Scholar
  48. Brandtzaeg, P., and Nilssen, D. E. (1995). Mucosal aspects of primary B-cell deficiency and gastrointestinal infections. Curr. Opin. Gastroenterol. 11:532–540.Google Scholar
  49. Brandtzaeg, P., Nilssen, D. E., Rognum, T. O., and Thrane, P. S. (1991). Ontogeny of the mucosal immune system and IgA deficiency. Gastroenterol. Clin. North Am. 20:397–439.PubMedGoogle Scholar
  50. Brandtzaeg, P., and Pabst, R. (2004). Let’s go mucosal: communication on slippery ground. Trends Immunol. 25:570–577.PubMedGoogle Scholar
  51. Brandtzaeg, P., and Prydz, H. (1984). Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 311:71–73.PubMedGoogle Scholar
  52. Brandtzaeg, P., and Tolo, K. (1977). Mucosal penetrability enhanced by serum-derived antibodies. Nature 266:262–263.PubMedGoogle Scholar
  53. Burns, J. W., Siadat-Pajouh, M., Krishnaney, A. A., and Greenberg, H. B. (1996). Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity. Science 272:104–107.PubMedGoogle Scholar
  54. Burrows, P. D., and Cooper, M. D. (1997). IgA deficiency. Adv. Immunol. 65:245–276.PubMedGoogle Scholar
  55. Cario, E. (2005). Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and nod2. Gut 54:1182–1193.PubMedGoogle Scholar
  56. Cario, E., and Podolsky, D. K. (2000). Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 68:7010–7017.PubMedGoogle Scholar
  57. Casas, R., Böttcher, M. F., Duchén, K., and Björkstén, B. (2000). Detection of IgA antibodies to cat, C-lactoglobulin, and ovalbumin allergens in human milk. J. Allergy Clin. Immunol. 105:1236–1240.PubMedGoogle Scholar
  58. Casola, S., Otipoby, K. L., Alimzhanov, M., Humme, S., Uyttersprot, N., Kutok, J. L., Carroll, M. C., and Rajewsky, K. (2004). B cell receptor signal strength determines B cell fate. Nat. Immunol. 5:317–327.PubMedGoogle Scholar
  59. Chaplin, D. D. (2003). 1. Overview of the immune response. J. Allergy Clin. Immunol. 111:S442–S459.PubMedGoogle Scholar
  60. Chen, Y., Song, K., and Eck, S. L. (2000). An intra-Peyer’s patch gene transfer model for studying mucosal tolerance: distinct roles of B7 and IL-12 in mucosal T cell tolerance. J. Immunol. 165:3145–3153.PubMedGoogle Scholar
  61. Chirdo, F. G., Millington, O. R., Beacock-Sharp, H., and Mowat, A. M. (2005). Immunomodulatory dendritic cells in intestinal lamina propria. Eur. J. Immunol. 35:1831–1840.PubMedGoogle Scholar
  62. Christ, A. D., and Blumberg, R. S. (1997). The intestinal epithelial cell: immunological aspects. Springer Semin. Immunopathol. 18:449–461.PubMedGoogle Scholar
  63. Chomarat, P., Dantin, C., Bennett, L., Banchereau, J., and Palucka, A. K. (2003). TNF skews monocyte differentiation from macrophages to dendritic cells. J. Immunol. 171:2262–2269.PubMedGoogle Scholar
  64. Clamp, J. R. (1980). Gastrointestinal mucus. In: Wright, R. (ed.), Recent Advances in Gastrointestinal Pathology. W.B. Saunders, London, p. 47.Google Scholar
  65. Collins, M. D., and Gibson, G. R. (1999). Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 69:1052S–1057S.PubMedGoogle Scholar
  66. Conley, M. E., and Delacroix, D. L. (1987). Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann. Intern. Med. 106:892–899.PubMedGoogle Scholar
  67. Crabbé, P. A., Nash, D. R., Bazin, H., Eyssen, H., and Heremans, J. F. (1970). Immunohistochemical observations on lymphoid tissues from conventional and germ-free mice. Lab. Invest. 22:448–457.PubMedGoogle Scholar
  68. Cuthbert, A. P., Fisher, S. A., Mirza, M. M, King, K., Hampe, J., Croucher, P. J., Mascheretti, S., Sanderson, J., Forbes, A., Mansfield, J., Schreiber, S., Lewis, C. M., and Mathew, C. G. (2002). The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122:867–874.PubMedGoogle Scholar
  69. Daniele, R. P. (1990). Immunoglobulin secretion in the airways. Annu. Rev. Physiol. 52:177–195.PubMedGoogle Scholar
  70. Davids, B. J., Palm, J. E., Housley, M. P., Smith, J. R., Andersen, Y. S., Martín, M.G., Hendrickson, B. A., Johansen, F.-E., Svard, S. G., Gillin, F. D., and Eckmann, L. (2006). Polymeric immunoglobulin receptor in intestinal immune defense against the lumen-dwelling protozoan parasite Giardia. J. Immunol. 177:6821–6990.Google Scholar
  71. Dickinson, E. C., Gorga, J. C., Garrett, M., Tuncer, R., Boyle, P., Watkins, S. C., Alber, S. M., Parizhskaya, M., Trucco, M., Rowe, M. I., and Ford, H. R. (1998). Immunoglobulin A supplementation abrogates bacterial translocation and preserves the architecture of the intestinal epithelium. Surgery 124:284–290.PubMedGoogle Scholar
  72. Duchmann, R., Neurath, M., Marker-Hermann, E., and Meyer Zum Buschenfelde, K. H. (1997). Immune responses towards intestinal bacteria: Current concepts and future perspectives. Z. Gastroenterol. 35:337–346.PubMedGoogle Scholar
  73. Dunn-Walters, D. K., Boursier, L., and Spencer, J. (1997a). Hypermutation, diversity and dissemination of human intestinal lamina propria plasma cells. Eur. J. Immunol. 27:2959–2964.PubMedGoogle Scholar
  74. Dunn-Walters, D. K., Hackett, M., Boursier, L., Ciclitira, P. J., Morgan, P., Challacombe, S. J., and Spencer, J. (2000). Characteristics of human IgA and IgM genes used by plasma cells in the salivary gland resemble those used in duodenum but not those used in the spleen. J. Immunol. 164:1595–1601.PubMedGoogle Scholar
  75. Dunn-Walters, D. K., Isaacson, P. G., and Spencer, J. (1997b). Sequence analysis of human IgVH genes indicates that ileal lamina propria plasma cells are derived from Peyer’s patches. Eur. J. Immunol. 27:463–467.PubMedGoogle Scholar
  76. Ehrhardt, G. R., Hsu, J. T., Gartland, L., Leu, C. M., Zhang, S., Davis, R. S., and Cooper, M. D. (2005). Expression of the immunoregulatory molecule FcRH4 defines a distinctive tissue-based population of memory B cells. J. Exp. Med. 202:783–791.PubMedGoogle Scholar
  77. Fagarasan, S., and Honjo, T. (2003). Intestinal IgA synthesis: regulation of front-line body defences. Nat. Rev. Immunol. 3:63–72.PubMedGoogle Scholar
  78. Favre, L., Spertini, F., and Corthesy, B. (2005). Secretory IgA possesses intrinsic modulatory properties stimulating mucosal and systemic immune responses. J. Immunol. 175:2793–2800.PubMedGoogle Scholar
  79. Feng, N., Lawton, J. A., Gilbert, J., Kuklin, N., Vo, P., Prasad, B. V., and Greenberg, H. B. (2002). Inhibition of rotavirus replication by a non-neutralizing, rotavirus VP6-specific IgA mAb. J. Clin. Invest. 109:1203–1213.PubMedGoogle Scholar
  80. Fernandez, M. I., Pedron, T., Tournebize, R., Olivo-Marin, J. C., Sansonetti, P. J., and Phalipon, A. (2003). Anti-inflammatory role for intracellular dimeric immunoglobulin a by neutralization of lipopolysaccharide in epithelial cells. Immunity 18:739–749.PubMedGoogle Scholar
  81. Fischer, M., and Kuppers, R. (1998). Human IgA- and IgM-secreting intestinal plasma cells carry heavily mutated VH region genes. Eur. J. Immunol. 28:2971–2977.PubMedGoogle Scholar
  82. Foligné, B., Grangette, C., and Pot, B. (2005a). Probiotics in IBD: mucosal and systemic routes of administration may promote similar effects. Gut 54:727–728.PubMedGoogle Scholar
  83. Foligné, B., Nutten, S., Steidler, L., et al. (2005b). Potentialities of the TNBS-induced colitis model to evaluate the anti-inflammatory properties of lactic acid bacteria. Dig. Dis. 51:390–400.Google Scholar
  84. Frossard, C. P., Hauser, C., and Eigenmann, P. A. (2004). Antigen-specific secretory IgA antibodies in the gut are decreased in a mouse model of food allergy. J. Allergy Clin. Immunol. 114:377–382.PubMedGoogle Scholar
  85. Gerson, C., Sabater, J., Scuri, M., Torbati, A., Coffey, R., Abraham, J. W., Lauredo, I., Forteza, R., Wanner, A., Salathe, M., Abraham, W. M., and Conner, G. E. (2000). The lactoperoxidase system functions in bacterial clearance of airways. Am. J. Respir. Cell Mol. Biol. 22:665–671.PubMedGoogle Scholar
  86. Glauber, J. G., Wandersee, N. J., Little, J. A., and Ginder, G. D. (1991). 5´-Flanking sequences mediate butyrate stimulation of embryonic globin gene expression in adult erythroid cells. Mol. Cell. Biol. 11:4690–4697.PubMedGoogle Scholar
  87. Gothefors, L., and Marklund, S. (1975). Lactoperoxidase activity in human milk and in saliva of newborn infants. Infect. Immun. 11:1210–1215.PubMedGoogle Scholar
  88. Grdic, D., Hornquist, E., Kjerrulf, M., and Lycke, N. Y. (1998). Lack of local suppression in orally tolerant CD8-deficient mice reveals a critical regulatory role of CD8+ T cells in the normal gut mucosa. J. Immunol. 160:754–762.PubMedGoogle Scholar
  89. Ha, S. A., Tsuji, M., Suzuki, K., Meek, B., Yasuda, N., Kaisho, T., and Fagarasan, S. (2006). Regulation of B1 cell migration by signals through Toll-like receptors. J. Exp. Med. 203:2541–2550.PubMedGoogle Scholar
  90. Haddeland, U., Karstensen, A. B., Farkas, L., Bø, K. O., Pirhonen, J., Karlsson, M., Kvåvik, W., Brandtzaeg, P., and Nakstad, B. (2005). Putative regulatory T cells are impaired in cord blood from neonates with hereditary allergy risk. Pediatr. Allergy Immunol. 16:104–112.PubMedGoogle Scholar
  91. Haller, D., Bode, C., Hammes, W. P., Pfeifer, A. M., Schiffrin, E. J., and Blum, S. (2000). Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 47:79–87.PubMedGoogle Scholar
  92. Haller, D., and Jobin, C. (2004). Interaction between resident luminal bacteria and the host: can a healthy relationship turn sour? J. Pediatr. Gastroenterol. Nutr. 38:123–136.PubMedGoogle Scholar
  93. Hampe, J., Grebe, J., Nikolaus, S., Solberg, C., Croucher, P. J., Mascheretti, S., Jahnsen, J., Moum, B., Klump, B., Krawczak, M., Mirza, M. M., Foelsch, U. R., Vatn, M., and Schreiber, S. (2002). Association of NOD2 (CARD 15) genotype with clinical course of Crohn’s disease: a cohort study. Lancet 359:1661–1665.PubMedGoogle Scholar
  94. Harris, N. L., Spoerri, I., Schopfer, J. F., Nembrini, C., Merky, P., Massacand, J., Urban, J. F., Jr., Lamarre, A., Burki, K., Odermatt, B., Zinkernagel, R. M., and Macpherson, A. J. (2006). Mechanisms of neonatal mucosal antibody protection. J. Immunol. 177:6256–6262.PubMedGoogle Scholar
  95. Hausmann, M., Kiessling, S., Mestermann, S., Webb, G., Spottl, T., Andus, T., Scholmerich, J., Herfarth, H., Ray, K., Falk, W., and Rogler, G. (2002). Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology 122:1987–2000.PubMedGoogle Scholar
  96. Helgeland, L., and Brandtzaeg, P. (2000). Development and function of intestinal B and T cells. Microbiol. Ecol. Health Dis. 12(Suppl. 2):110–127.Google Scholar
  97. Hoebe, K., Du, X., Georgel, P., Janssen, E., Tabeta, K., Kim, S. O., Goode, J., Lin, P., Mann, N., Mudd, S., Crozat, K., Sovath, S., Han, J., and Beutler, B. (2003). Identification of Lps2 as a key transducer of MyD88-independent TIR signaling. Nature 424:743–748.PubMedGoogle Scholar
  98. Holt, P. G. (1995). Postnatal maturation of immune competence during infancy and childhood. Pediatr. Allergy Immunol. 6:59–70.PubMedGoogle Scholar
  99. Holtmeier, W., Hennemann, A., and Caspary, W. F. (2000). IgA and IgM V(H) repertoires in human colon: Evidence for clonally expanded B cells that are widely disseminated. Gastroenterology 119:1253–1266.PubMedGoogle Scholar
  100. Hooper, L. V., and Gordon, J. I. (2001). Commensal host-bacterial relationships in the gut. Science 292:1115–1118.PubMedGoogle Scholar
  101. Hooper, L. V., Wong, M. H., Thelin, A., Hansson, L., Falk, P. G., and Gordon, J. I. (2001). Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884.PubMedGoogle Scholar
  102. Hopkin, J. M., Shaldon, S., Ferry, B., Coull, P., Antrobus, P., Enomoto, T., Yamashita, T., Kurimoto, F., Stanford, J., Shirakawa, T., and Rook, G. (1998). Mycobacterial immunisation in grass pollen asthma and rhinitis. Thorax 53(Suppl. 4):S63.Google Scholar
  103. Hoque, S. S., Ghosh, S., and Poxton, I. R. (2000). Differences in intestinal humoral immunity between healthy volunteers from UK and Bangladesh. Eur.J. Gastroenterol. Hepatol. 12:1185–1193.PubMedGoogle Scholar
  104. Horsfall, D. J., Cooper, J. M., and Rowley, D. (1978). Changes in the immunoglobulin levels of the mouse gut and serum during conventionalisation and following administration of Salmonella typhimurium. Aust. J. Exp. Biol. Med. Sci. 56:727–735.PubMedGoogle Scholar
  105. Huang, Y. T., Wright, A., Gao, X., Kulick, L., Yan, H., and Lamm, M. E. (2005). Intraepithelial cell neutralization of HIV-1 replication by IgA. J. Immunol. 174:4828–4835.PubMedGoogle Scholar
  106. Hugot, J. P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J. P., Belaiche, J., Almer, S., Tysk, C., O’Morain, C. A., Gassull, M., Binder, V., Finkel, Y., Cortot, A., Modigliani, R., Laurent-Puig, P., Gower-Rousseau, C., Macry, J., Colombel, J. F., Sahbatou, M., and Thomas, G. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603.PubMedGoogle Scholar
  107. Husby, S., Jensenius, J. C., and Svehag, S.-E. (1985). Passage of undegraded dietary antigen into the blood of healthy adults. Quantification, estimation of size distribution, and relation of uptake to levels of specific antibodies. Scand. J. Immunol. 22:83–92.PubMedGoogle Scholar
  108. Ishizaka, S., Kimoto, M., Tsujii, T., and Saito, S. (1994). Antibody production system modulated by oral administration of human milk and TGF-t. Cell. Immunol. 159:77–84.PubMedGoogle Scholar
  109. Isolauri, E., Sutas, Y., Kankaanpaa, P., Arvilommi, H., Salminen, S. (2001). Probiotics: Effects on immunity. Am. J. Clin. Nutr. 73:444S–450S.PubMedGoogle Scholar
  110. Ivarsson, A., Hernell, O., Stenlund, H., and Persson, L. A. (2002). Breast-feeding protects against celiac disease. Am. J. Clin. Nutr. 75:914–921.PubMedGoogle Scholar
  111. Iwata, M., Hirakiyama, A., Eshima, Y., Kagechika, H., Kato, C., and Song, S. Y. (2004). Retinoic acid imprints gut-homing specificity on T cells. Immunity 21:527–538.PubMedGoogle Scholar
  112. Janu, P., Li, J., Renegar, K. B., and Kudsk, K. A. (1997). Recovery of gut-associated lymphoid tissue and upper respiratory tract immunity after parenteral nutrition. Ann. Surg. 225:707–715.PubMedGoogle Scholar
  113. Järvinen, K. M., Laine, S. T., Jarvenpaa, A. L., and Suomalainen, H. K. (2000). Does low IgA in human milk predispose the infant to development of cow’s milk allergy? Pediatr. Res. 48:457–462.PubMedGoogle Scholar
  114. Jenkins, S. Wang, L. J., Vazir, M. Vela, J., Sahagun, O., Gabbay, P., Hoang, L., Diaz, R. L., Aranda, R., and Martín, M. G. (2003). Role of passive and adaptive immunity in influencing enterocyte-specific gene expression. Am. J. Physiol.: Gastrointest. Liver Physiol. 285:G714–G725.Google Scholar
  115. Jiang, H.-Q., Bos, N. A., and Cebra, J. J. (2001). Timing, localization, and persistence of colonization by segmented filamentous bacteria in the neonatal mouse gut depend on immune status of mothers and pups. Infect. Immun. 69:3611–3617.PubMedGoogle Scholar
  116. Johansen, F.-E., Braathen, R., and Brandtzaeg, P. (2000). Role of J chain in secretory immunoglobulin formation. Scand. J. Immunol. 52:240–248.PubMedGoogle Scholar
  117. Johansen, F.-E., Braathen, R., and Brandtzaeg, P. (2001). The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA. J. Immunol. 167:5185–5192.PubMedGoogle Scholar
  118. Johansen, F.-E., and Brandtzaeg, P. (2004). Transcriptional regulation of the mucosal IgA system. Trends Immunol. 25:150–157.PubMedGoogle Scholar
  119. Johansen, F.-E., Pekna, M., Norderhaug, I.N., Haneberg, B., Hietala, M.A., Krajci, P., Betsholtz, C., and Brandtzaeg, P. (1999). Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J. Exp. Med. 190:915–922.PubMedGoogle Scholar
  120. Jones, G., Steketee, R. W., Black, R. E., Bhutta, Z. A., and Morris, S.S., and Bellagio Child Survival Study Group. (2003). How many child deaths can we prevent this year? Lancet 362:65–71.Google Scholar
  121. Judge, T., and Lichtenstein, G. R. (2002). The NOD2 gene and Crohn’s disease: Another triumph for molecular genetics. Gastroenterology 122:826–828.PubMedGoogle Scholar
  122. Juto, P., and Holm, S. (1992). Gliadin-specific and cow’s milk protein-specific IgA in human milk. J. Pediatr. Gastroenterol. Nutr. 15:159–162.PubMedCrossRefGoogle Scholar
  123. Kadowaki, N., Antonenko, S., and Liu, Y. J. (2001). Distinct CpG DNA and polyinosinic-polycytidylic acid double-stranded RNA, respectively, stimulate CD11c type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN. J. Immunol. 166:2291–2295.PubMedGoogle Scholar
  124. Kaisho, T., and Akira, S. (2001). Dendritic-cell function in Toll-like receptor- and MyD88-knockout mice. Trends Immunol. 22:78–83.PubMedGoogle Scholar
  125. Kalliomäki, M., Salminen, S., Arvilommi, H., Kero, P., Koskinen, P., and Isolauri, E. (2001). Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357:1076–1079.PubMedGoogle Scholar
  126. Karlsson, M. R., Kahu, H., Johansen, F.-E., and Brandtzaeg, P. (2005). Prominent induction of oral tolerance with activation of regulatory CD4+CD25+ T cells in mice lacking secretory antibodies. In: 12th International Congress of Mucosal Immunology: From Fundamental Biology to Human Disease. June 25–30, Boston, MA, Abstract 53150.Google Scholar
  127. Karlsson, M. R., Rugtveit, J., and Brandtzaeg, P. (2004). Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow’s milk allergy. J. Exp. Med. 199:1679–1688.PubMedGoogle Scholar
  128. Kelly, D., Campbell, J. I., King, T. P., Grant, G., Jansson, E. A., Coutts, A. G., Pettersson, S., and Conway, S. (2004). Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-t and RelA. Nat. Immunol. 5:104–112.PubMedGoogle Scholar
  129. Kelly, D., Conway, S., and Aminov, R. (2005). Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol. 26:326–333.PubMedGoogle Scholar
  130. Kett, K., Brandtzaeg, P., Radl, J., and Haaijman, J. J. (1986). Different subclass distribution of IgA-producing cells in human lymphoid organs and various secretory tissues. J. Immunol. 136:3631–3635.PubMedGoogle Scholar
  131. Kilian, M., Husby, S., Høst, A., and Halken, S. (1995). Increased proportions of bacteria capable of cleaving IgA1 in the pharynx of infants with atopic disease. Pediatr. Res. 38:182–186.PubMedGoogle Scholar
  132. Kilian, M., Reinholdt, J., Lomholt, H., Poulsen, K., and Frandsen, E. V. (1996). Biological significance of IgA1 proteases in bacterial colonization and pathogenesis: critical evaluation of experimental evidence. APMIS 104:321–338.PubMedGoogle Scholar
  133. Kirjavainen, P. V., and Gibson, G. R. (1999). Healthy gut microflora and allergy: factors influencing development of the microbiota. Ann. Med. 31:288–292.PubMedGoogle Scholar
  134. Klinman, D. M., Yi, A. K., Beaucage, S. L., Conover, J., and Krieg, A. M. (1996). CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon n. Proc. Natl. Acad. Sci. USA 93:2879–2883.PubMedGoogle Scholar
  135. Knox, W. F. (1986). Restricted feeding and human intestinal plasma cell development. Arch. Dis. Child. 61:744–749.PubMedGoogle Scholar
  136. Kobayashi, K. S., Chamaillard, M., Ogura, Y., Henegariu, O., Inohara, N., Nunez, G., and Flavell, R. A. (2005). Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731–734.PubMedGoogle Scholar
  137. Kobayashi, K., Hernandez, L. D., Galan, J. E., Janeway, C. A., Medzhitov, R., and Flavell, R. A. (2002). IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110:191–202.PubMedGoogle Scholar
  138. Krajci, P., Meling, G. I., Andersen, S. N., Hofstad, B., Vatn, M.H., Rognum, T. O., and Brandtzaeg, P. (1996). Secretory component mRNA and protein expression in colorectal adenomas and carcinomas. Br. J. Cancer 73:1503–1510.PubMedGoogle Scholar
  139. Kroese, F. G., Butcher, E. C., Stall, A. M., Lalor, P. A., Adams, S., and Herzenberg, L. A. (1989). Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int. Immunol. 1:75–84.PubMedGoogle Scholar
  140. Kull, I., Wickman, M., Lilja, G., Nordvall, S. L., and Pershagen, G. (2002). Breast feeding and allergic diseases in infants-a prospective birth cohort study. Arch. Dis. Child. 87:478–481.PubMedGoogle Scholar
  141. Kunkel, E. J., and Butcher, E. C. (2002). Chemokines and the tissue-specific migration of lymphocytes. Immunity 16:1–4.PubMedGoogle Scholar
  142. Kvale, D., and Brandtzaeg, P. (1995). Constitutive and cytokine induced expression of HLA molecules, secretory component, and intercellular adhesion molecule-1 is modulated by butyrate in the colonic epithelial cell line HT-29. Gut 36:737–742.PubMedGoogle Scholar
  143. Lala, S., Ogura, Y., Osborne, C., Hor, S. Y., Bromfield, A., Davies, S., Ogunbiyi, O., Nunez, G., and Keshav, S. (2003). Crohn’s disease and the NOD2 gene: a role for Paneth cells. Gastroenterology 125:47–57.PubMedGoogle Scholar
  144. Lanning, D. K., Rhee, K. J., and Knight, K. L. (2005). Intestinal bacteria and development of the B-lymphocyte repertoire. Trends Immunol. 26:419–425.PubMedGoogle Scholar
  145. Latcham, F., Merino, F., Lang, A., Garvey, J., Thomson, M. A., Walker-Smith, J. A., Davies, S. E., Phillips, A. D., and Murch, S. H. (2003). A consistent pattern of minor immunodeficiency and subtle enteropathy in children with multiple food allergy. J. Pediatr. 143:39–47.PubMedGoogle Scholar
  146. Li, J., Kudsk, K. A., Gocinski, B., Dent, D., Glezer, J., and Langkamp-Henken, B. (1995a). Effects of parenteral and enteral nutrition on gut-associated lymphoid tissue. J. Trauma 39:44–51.PubMedGoogle Scholar
  147. Li, J., Kudsk, K. A., Hamidian, M., and Gocinski, B. L. (1995b). Bombesin affects mucosal immunity and gut-associated lymphoid tissue in intravenously fed mice. Arch. Surg. 130:1164–1169.PubMedGoogle Scholar
  148. Liew, F. Y. (2002). TH1 and TH2 cells: a historical perspective. Nat. Rev. Immunol. 2:55–60.PubMedGoogle Scholar
  149. Lim, P. L., and Rowley, D. (1982). The effect of antibody on the intestinal absorption of macromolecules and on intestinal permeability in adult mice. Int. Arch. Allergy Appl. Immunol. 68:41–46.PubMedGoogle Scholar
  150. Lodinová, R., Jouja, V., and Wagner, V. (1973). Serum immunoglobulins and coproantibody formation in infants after artificial intestinal colonization with Escherichia coli 083 and oral lysozyme administration. Pediatr. Res. 7:659–669.PubMedGoogle Scholar
  151. Lotz, M., Gutle, D., Walther, S., Menard, S., Bogdan, C., and Hornef, M. W. (2006). Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J. Exp. Med. 203:973–984.PubMedGoogle Scholar
  152. Lycke, N., Erlandsson, L., Ekman, L., Schon, K., and Leanderson, T. (1999). Lack of J chain inhibits the transport of gut IgA and abrogates the development of intestinal antitoxic protection. J. Immunol. 163:913–919.PubMedGoogle Scholar
  153. MacDonald, T. T., and Monteleone, G. (2005). Immunity, inflammation, and allergy in the gut. Science 307:1920–1925.PubMedGoogle Scholar
  154. Macpherson, A. J., Gatto, D., Sainsbury, E., Harriman, G. R., Hengartner, H., and Zinkernagel, R. M. (2000). A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288:2222–2226.PubMedGoogle Scholar
  155. Macpherson, A. J., Geuking, M. B., and McCoy, K. D. (2005). Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology 115:153–162.PubMedGoogle Scholar
  156. Macpherson, A. J., Lamarre, A., McCoy, K., Harriman, G. R., Odermatt, B., Dougan, G., Hengartner, H., and Zinkernagel, R. M. (2001). IgA production without g or chain expression in developing B cells. Nat. Immunol. 2:625–631.PubMedGoogle Scholar
  157. Macpherson, A. J., and Uhr, T. (2004). Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:1662–1665.PubMedGoogle Scholar
  158. Maeda, S., Hsu, L. C., Liu, H., Bankston, L. A., Iimura, M., Kagnoff, M. F., Eckmann, L., and Karin, M. (2005). Nod2 mutation in Crohn’s disease potentiates NF-aB activity and IL-1B processing. Science 307:734–738.PubMedGoogle Scholar
  159. Malin, M., Suomalainen, H., Saxelin, M., and Isolauri, E. (1996). Promotion of IgA immune response in patients with Crohn’s disease by oral bacteriotherapy with Lactobacillus GG. Ann. Nutr. Metab. 40:137–145.PubMedGoogle Scholar
  160. Manigold, T., Böcker, U., Traber, P., Dong-Si, T., Kurimoto, M., Hanck, C., Singer, M. V., and Rossol, S. (2000). Lipopolysaccharide/endotoxin induces IL-18 via CD14 in human peripheral blood mononuclear cells in vitro. Cytokine 12:1788–1792.PubMedGoogle Scholar
  161. Manser, T. (2004). Textbook germinal centers? J. Immunol. 172:3369–3375.PubMedGoogle Scholar
  162. Mantis, N. J., Cheung, M. C., Chintalacharuvu, K. R., Rey, J., Corthesy, B., and Neutra, M. R. (2002). Selective adherence of IgA to murine Peyer’s patch M cells: Evidence for a novel IgA receptor. J. Immunol. 169:1844–1851.PubMedGoogle Scholar
  163. Marchant, A., Goetghebuer, T., Ota, M. O., Wolfe, I., Ceesay, S. J., De Groote, D., Corrah, T., Bennett, S., Wheeler, J., Huygen, K., Aaby, P., McAdam, K. P., and Newport, M. J. (1999). Newborns develop a Th1-type immune response to Mycobacterium bovis bacillus Calmette-Guerin vaccination. J. Immunol. 163:2249–2255.PubMedGoogle Scholar
  164. Mathew, C. G., and Lewis, C. M. (2004). Genetics of inflammatory bowel disease: Progress and prospects. Hum. Mol. Genet. 13(Spec. No. 1):R161–R168.Google Scholar
  165. Mazanec, M. B., Coudret, C. L., and Fletcher, D. R. (1995). Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J. Virol. 69:1339–1343.PubMedGoogle Scholar
  166. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O., and Kasper, D. L. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118.PubMedGoogle Scholar
  167. Mazanec, M. B., Nedrud, J. G., Kaetzel, C. S., and Lamm, M. E. (1993). A three-tiered view of the role of IgA in mucosal defense. Immunol. Today. 14:430–435.PubMedGoogle Scholar
  168. McInnes, I. B., Gracie, J. A., Leung, B. P., Wei, X. Q., and Liew, F. Y. (2000). Interleukin 18: A pleiotropic participant in chronic inflammation. Immunol Today 21:312–315.PubMedGoogle Scholar
  169. McLoughlin, G. A., Hede, J. E., Temple, J. G., Bradley, J., Chapman, D. M., and McFarland, J. (1978). The role of IgA in the prevention of bacterial colonization of the jejunum in the vagotomized subject. Br. J. Surg. 65:435–437.PubMedGoogle Scholar
  170. Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1:135–145.PubMedGoogle Scholar
  171. Mennechet, F. J., Kasper, L. H., Rachinel, N., Minns, L. A., Luangsay, S., Vandewalle, A., and Buzoni-Gatel, D. (2004). Intestinal intraepithelial lymphocytes prevent pathogen-driven inflammation and regulate the Smad/T-bet pathway of lamina propria CD4+ T cells. Eur. J. Immunol. 34:1059–1067.PubMedGoogle Scholar
  172. Milling, S. W., Cousins, L., and MacPherson, G. G. (2005). How do DCs interact with intestinal antigens? Trends Immunol. 26:349–352.PubMedGoogle Scholar
  173. Modlin, R. L. (2000). Immunology. A Toll for DNA vaccines. Nature 408:659–660.PubMedGoogle Scholar
  174. Moldoveanu, Z., Tenovuo, J., Mestecky, J., and Pruitt, K. M. (1982). Human milk peroxidase is derived from milk leukocytes. Biochim. Biophys. Acta 718:103–108.PubMedGoogle Scholar
  175. Mora, J. R., Iwata, M., Eksteen, B., Song, S. Y., Junt, T., Senman, B., Otipoby, K. L., Yokota, A., Takeuchi, H., Ricciardi-Castagnoli, P., Rajewsky, K., Adams, D. H., and von Andrian, U. H. (2006), Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314:1157–1160.PubMedGoogle Scholar
  176. Moreau, M. C., Ducluzeau, R., Guy-Grand, D., and Muller, M. C. (1978). Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice assosiated with different living or dead bacterial strains of intestinal origin. Infect. Immun. 121:532–539.Google Scholar
  177. Moreau, M. C., and Gaboriau-Routhiau, V. (2000). Immunomodulation by the gut microflora and probiotics. Probiotics 3:69–114.Google Scholar
  178. Mostov, K. E., and Blobel, G. (1982). A transmembrane precursor of secretory component. The receptor for transcellular transport of polymeric immunoglobulins. J. Biol. Chem. 257:11, 816–11, 821.Google Scholar
  179. Mowat, A. M. (2003). Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. 3:331–341.PubMedGoogle Scholar
  180. Moynagh, P. N. (2005). TLR signalling and activation of IRFs: Revisiting old friends from the NF-vB pathway. Trends Immunol. 26:469–476.PubMedGoogle Scholar
  181. Nagao, A. T., Pilagallo, M. I. D. S., and Pereira, A. B. (1993). Quantitation of salivary, urinary and faecal SIgA in children living in different conditions of antigenic exposure. J. Trop. Pediatr. 39:278–283.PubMedGoogle Scholar
  182. Nagler-Anderson, C. (2001). Man the barrier! Strategic defences in the intestinal mucosa. Nat. Rev. Immunol. 1:59–67.PubMedGoogle Scholar
  183. Nakamura, Y., Nosaka, S., Suzuki, M., Nagafuchi, S., Takahashi, T., Yajima, T., Takenouchi-Ohkubo, N., Iwase, T., and Moro, I. (2004). Dietary fructooligosaccharides up-regulate immunoglobulin A response and polymeric immunoglobulin receptor expression in intestines of infant mice. Clin. Exp. Immunol. 137:52–58.PubMedGoogle Scholar
  184. Neish, A. S., Gewirtz, A. T., Zeng, H., Young, A. N., Hobert, M. E., Karmali, V., Rao, A. S., and Madara, J. L. (2000). Prokaryotic regulation of epithelial responses by inhibition of IsB-B ubiquitination. Science 289:1560–1563.PubMedGoogle Scholar
  185. Neutra, M. R., Mantis, N. J., and Kraehenbuhl, J. P. (2001). Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat. Immunol. 2:1004–1009.PubMedGoogle Scholar
  186. Nilsen, E. M., Jahnsen, F. L., Lundin, K. E. A., Johansen, F.-E., Fausa, O., Sollid, L. M., Jahnsen, J., Scott, H., and Brandtzaeg, P. (1998). Gluten induces an intestinal cytokine response strongly dominated by interferon-f in patients with celiac disease. Gastroenterology 115:551–563.PubMedGoogle Scholar
  187. Nilsen, E. M., Lundin, K. E. A., Krajcii, P., Scott, H., Sollid, L. M., and Brandtzaeg, P. (1995). Gluten-specific, HLA-DQ restricted T cells from coeliac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon t. Gut 37:766–776.PubMedGoogle Scholar
  188. Ogura, Y., Bonen, D. K., Inohara, N., Nicolae, D. L., Chen, F. F., Ramos, R., Britton, H., Moran, T., Karaliuskas, R., Duerr, R. H., Achkar, J. P., Brant, S. R., Bayless, T. M., Kirschner, B. S., Hanauer, S. B., Nunez, G., and Cho, J. H. (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606.PubMedGoogle Scholar
  189. Olaussen, R. W., Johansen, F.-E., Lundin, K. E., Jahnsen, J., Brandtzaeg, P., and Farstad, I. N. (2002). Interferon-s-secreting T cells localize to the epithelium in coeliac disease. Scand. J. Immunol. 56:652–664.PubMedGoogle Scholar
  190. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T., and Seya, T. (2003). TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-, induction. Nat. Immunol. 4:161–167.PubMedGoogle Scholar
  191. Östman, S., Taube, M., and Telemo, E. (2005). Tolerosome-induced oral tolerance is MHC dependent. Immunology 116:464–476.PubMedGoogle Scholar
  192. Paganelli, R., and Levinsky, R. J. (1980). Solid phase radioimmunoassay for detection of circulating food protein antigens in human serum. J. Immunol. Methods. 37:333–341.PubMedGoogle Scholar
  193. Pal, K., Kaetzel, C. S., Brundage, K. Cunningham, C., and Cuff, C. F. (2005). Regulation of polymeric immunoglobulin receptor expression by reovirus. J. Gen. Virol. 86:2347–2357.PubMedGoogle Scholar
  194. Peng, Z., Wang, H., Mao, X., HayGlass, K. T., and Simons, F. E. (2001). CpG oligodeoxynucleotide vaccination suppresses IgE induction but may fail to down-regulate ongoing IgE responses in mice. Int. Immunol. 13:3–11.PubMedGoogle Scholar
  195. Perez-Machado, M. A., Ashwood, P., Thomson, M. A., Latcham, F., Sim, R., Walker-Smith, J. A., and Murch, S. H. (2003). Reduced transforming growth factor-r1-producing T cells in the duodenal mucosa of children with food allergy. Eur. J. Immunol. 33:2307–2315.PubMedGoogle Scholar
  196. Perkkiö, M. (1980). Immunohistochemical study of intestinal biopsies from children with atopic eczema due to food allergy. Allergy 35:573–580.PubMedGoogle Scholar
  197. Persson, C. G., Erjefalt, J. S., Greiff, L., Erjefalt, I., Korsgren, M., Linden, M., Sundler, F., Andersson, M., and Svensson, C. (1998). Contribution of plasma-derived molecules to mucosal immune defence, disease and repair in the airways. Scand. J. Immunol. 47:302–313.PubMedGoogle Scholar
  198. Phalipon, A., and Corthésy, B. (2003). Novel functions of the polymeric Ig receptor: Well beyond transport of immunoglobulins. Trends Immunol. 24:55–58.PubMedGoogle Scholar
  199. Philpott, D. J., Girardin, S. E., and Sansonetti, P. J. (2001). Innate immune responses of epithelial cells following infection with bacterial pathogens. Curr. Opin. Immunol. 13:410–416.PubMedGoogle Scholar
  200. Planchon, S. M., Martins, C. A., Guerrant, R. L., and Roche, J. K. (1994). Regulation of intestinal epithelial barrier function by TGF-t1. Evidence for its role in abrogating the effect of a T cell cytokine. J. Immunol. 153:5730–5739.PubMedGoogle Scholar
  201. Prokešová, L., Ladmanová, P., Cechova, D., Stepánková, R., Kozáková, H., Mlcková, Å., Kuklik, R., and Mára, M. (1999). Stimulatory effects of Bacillus firmus on IgA production in human and mice. Immunol. Lett. 69:55–56.Google Scholar
  202. Prokešová, L., Mlčková, P., Staňková, I., Chloubová, A., Novotná, V., Ladmanová, P., Chalupná, P., and Mára, M. (1998). Effect of Bacillus firmus on antibody formation after mucosal and parenteral immunization in mice. Immunol. Lett. 64:161–166.PubMedGoogle Scholar
  203. Pulendran, B., and Ahmed, R. (2006). Translating innate immunity into immunological memory: implications for vaccine development. Cell 124:849–863.PubMedGoogle Scholar
  204. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., and Medzhitov, R. (2004). Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241.PubMedGoogle Scholar
  205. Rautava, S., Ruuskanen, O., Ouwehand, A., Salminen, S., and Isolauri, E. (2004). The hygiene hypothesis of atopic disease: an extended version. J. Pediatr. Gastroenterol. Nutr. 38:378–388.PubMedGoogle Scholar
  206. Renegar, K. B., Johnson, C. D., Dewitt, R. C., King, B. K., Li, J., Fukatsu, K., and Kudsk, K. A. (2001). Impairment of mucosal immunity by total parenteral nutrition: requirement for IgA in murine nasotracheal anti-influenza immunity. J. Immunol. 166:819–825.PubMedGoogle Scholar
  207. Renegar, K. B., Small, P. A., Boykins, L. G., and Wright, P. F. (2004). Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J. Immunol. 173:1978–1986.PubMedGoogle Scholar
  208. Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., Granucci, F., Kraehenbuhl, J. P., and Ricciardi-Castagnoli, P. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2:361–367.PubMedGoogle Scholar
  209. Rey, J., Garin, N., Spertini, F., and Corthesy, B. (2004). Targeting of secretory IgA to Peyer’s patch dendritic and T cells after transport by intestinal M cells. J. Immunol. 172:3026–3033.PubMedGoogle Scholar
  210. Reynolds, J. D., and Morris, B. (1984). The effect of antigen on the development of Peyer’s patches in sheep. Eur. J. Immunol. 14:1–6.PubMedGoogle Scholar
  211. Rhee, K. J., Sethupathi, P., Driks, A., Lanning, D. K., and Knight, K. L. (2004). Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J. Immunol. 172:1118–1124.PubMedGoogle Scholar
  212. Ricciardi-Castagnoli, P., and Granucci, F. (2002). Opinion: Interpretation of the complexity of innate immune responses by functional genomics. Nat. Rev. Immunol. 2:881–889.PubMedGoogle Scholar
  213. Rimoldi, M., Chieppa, M., Salucci, V., Avogadri, F., Sonzogni, A., Sampietro, G. M., Nespoli, A., Viale, G., Allavena, P., and Rescigno, M. (2005). Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 6:507–514.PubMedGoogle Scholar
  214. Robinson, J. K., Blanchard, T. G., Levine, A. D., Emancipator, S. N., and Lamm, M. E. (2001). A mucosal IgA-mediated excretory immune system in vivo. J. Immunol. 166:3688–3692.PubMedGoogle Scholar
  215. Rogers, H. J., and Synge, C. (1978). Bacteriostatic effect of human milk on Escherichia coli: The role of IgA. Immunology 34:19–28.PubMedGoogle Scholar
  216. Rognum, T. O., Elgjo, K., Fausa, O., and Brandtzaeg, P. (1982). Immunohistochemical evaluation of carcinoembryonic antigen, secretory component, and epithelial IgA in ulcerative colitis with dysplasia. Gut 23:123–133.PubMedGoogle Scholar
  217. Roy, M. J., and Varvayanis, M. (1987). Development of dome epithelium in gut-associated lymphoid tissues: Association of IgA with M cells. Cell Tissue Res. 248:645–651.PubMedGoogle Scholar
  218. Rugtveit, J., Bakka, A., and Brandtzaeg, P. (1997b). Differential distribution of B7.1 (CD80) and B7.2 (CD86) co-stimulatory molecules on mucosal macrophage subsets in human inflammatory bowel disease (IBD). Clin. Exp. Immunol. 110:104–113.PubMedGoogle Scholar
  219. Rugtveit, J., Nilsen, E. M., Bakka, A., Carlsen, H., Brandtzaeg, P., and Scott, H. (1997a). Cytokine profiles differ in newly recruited and resident subsets of mucosal macrophages from inflammatory bowel disease. Gastroenterology 112:1493–1505.PubMedGoogle Scholar
  220. Sagie, E., Tarabulus, J., Maeir, D. M., and Freier, S. (1974). Diet and development of intestinal IgA in the mouse. Isr. J. Med. Sci. 10:532–534.PubMedGoogle Scholar
  221. Sansonetti, P. J. (2004). War and peace at mucosal surfaces. Nat. Rev. Immunol. 4:953–964.PubMedGoogle Scholar
  222. Savilahti, E., Tainio, V.-M., Salmenpera, L., Arjomaa, P., Kallio, M., Perheentupa, J., and Siimes, M. A. (1991). Low colostral IgA associated with cow’s milk allergy. Acta Paediatr. Scand. 80:1207–1213.PubMedGoogle Scholar
  223. Schjerven, H., Brandtzaeg, P., and Johansen, F.-E. (2001). A novel NF-2B/Rel site in intron 1 cooperates with proximal promoter elements to mediate TNF-d-induced transcription of the human polymeric Ig receptor. J. Immunol. 167:6412–6420.PubMedGoogle Scholar
  224. Schneeman, T. A., Bruno, M., Schjerven, H., Johansen, F.-E., Chady, L., and Kaetzel, C. S. (2005). Regulation of the polymeric Ig receptor by signaling through TLRs 3 and 4: Linking innate and adaptive immune responses. J. Immunol. 175:376–384.PubMedGoogle Scholar
  225. Schoetzau, A., Filipiak-Pittroff, B., Franke, K., Koletzko, S., Von Berg, A., Gruebl, A., Bauer, C. P., Berdel, D., Reinhardt, D., and Wichmann, H. E., and German Infant Nutritional Intervention Study Group. (2002). Effect of exclusive breast-feeding and early solid food avoidance on the incidence of atopic dermatitis in high-risk infants at 1 year of age. Pediatr. Allergy Immunol. 13:234–242.PubMedGoogle Scholar
  226. Sheil, B., McCarthy, J., O’Mahony, L., Bennett, M. W., Ryan, P., Fitzgibbon, J. J., Kiely, B., Collins, J. K., and Shanahan, F. (2004). Is the mucosal route of administration essential for probiotic function? Subcutaneous administration is associated with attenuation of murine colitis and arthritis. Gut 53:694–700.PubMedGoogle Scholar
  227. Shroff, K. E., Meslin, K., and Cebra, J. J. (1995). Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect. Immun. 63:3904–3913.PubMedGoogle Scholar
  228. Sloper, K. S., Brook, C. G., Kingston, D., Pearson, J. R., and Shiner, M. (1981). Eczema and atopy in early childhood: low IgA plasma cell counts in the jejunal mucosa. Arch. Dis. Child. 56:939–942.PubMedGoogle Scholar
  229. Smith, P. D., Smythies, L. E., Mosteller-Barnum, M., Sibley, D. A., Russell, M. W., Merger, M., Sellers, M. T., Orenstein, J. M., Shimada, T., Graham, M. F., and Kubagawa, H. (2001). Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J. Immunol. 167:2651–2656.PubMedGoogle Scholar
  230. Sørensen, C. H., and Kilian, M. (1984). Bacterium-induced cleavage of IgA in nasopharyngeal secretions from atopic children. Acta Pathol. Microbiol. Immunol. Scand. [C] 92:85–87.Google Scholar
  231. Steidler, L., Hans, W., Schotte, L., Neirynck, S., Obermeier, F., Falk, W., Fiers, W., and Remaut, E. (2000). Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289:1352–1355.PubMedGoogle Scholar
  232. Stephensen, C. B., Moldoveanu, Z., and Gangopadhyay, N. N. (1996). Vitamin A deficiency diminishes the salivary immunoglobulin A response and enhances the serum immunoglobulin G response to influenza A virus infection in BALB/c mice. J. Nutr. 126:94–102.PubMedGoogle Scholar
  233. Stoel, M., Jiang, H. Q., van Diemen, C. C., Bun, J. C., Dammers, P. M., Thurnheer, M. C., Kroese, F. G., Cebra, J. J., and Bos, N. A. (2005). Restricted IgA repertoire in both B-1 and B-2 cell-derived gut plasmablasts. J. Immunol. 174:1046–1054.PubMedGoogle Scholar
  234. Sun, K., Johansen, F.-E., Eckmann, L., and Metzger, D. W. (2004). An important role for polymeric Ig receptor-mediated transport of IgA in protection against Streptococcus pneumoniae nasopharyngeal carriage. J. Immunol. 173:4576–4581.PubMedGoogle Scholar
  235. Talham, G. L., Jiang, H. Q., Bos, N. A., and Cebra, J. J. (1999). Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect. Immun. 67:1992–2000.PubMedGoogle Scholar
  236. Taylor, B., Norman, A. P., Orgel, H. A., Stokes, C. R., Turner, M. W., and Soothill, J. F. (1973). Transient IgA deficiency and pathogenesis of infantile atopy. Lancet 2:111–113.PubMedGoogle Scholar
  237. Tenovuo, J., Moldoveanu, Z., Mestecky, J., Pruitt, K. M., and Rahemtulla, B. M. (1982). Interaction of specific and innate factors of immunity: IgA enhances the antimicrobial effect of the lactoperoxidase system against Streptococcus mutans. J. Immunol. 128:726–731.PubMedGoogle Scholar
  238. Thrane, P. S., Rognum, T. O., and Brandtzaeg, P. (1991). Ontogenesis of the secretory immune system and innate defence factors in human parotid glands. Clin. Exp. Immunol. 86:342–348.PubMedCrossRefGoogle Scholar
  239. Umesaki, Y., Okada, Y., Matsumoto, S., Imaoka, A., and Setoyama, H. (1995). Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol. Immunol. 39:555–562.PubMedGoogle Scholar
  240. Uren, T. K., Johansen, F.-E., Wijburg, O. L., Koentgen, F., Brandtzaeg, P., and Strugnell, R. A. (2003). Role of the polymeric Ig receptor in mucosal B cell homeostasis. J. Immunol. 170:2531–2539.PubMedGoogle Scholar
  241. Uren, T. K., Wijburg, O.L. C., Simmons, C., Johansen, F.-E., Brandtzaeg, P., and Strugnell, R. A. (2005). Vaccine-induced protection against gastrointestinal bacterial infections in the absence of secretory antibodies. Eur. J. Immunol. 35:180–188.PubMedGoogle Scholar
  242. van Asperen, P. P., Gleeson, M., Kemp, A. S., Cripps, A. W., Geraghty, S. B., Mellis, C. M., and Clancy, R. L. (1985). The relationship between atopy and salivary IgA deficiency in infancy. Clin. Exp. Immunol. 62:753–757.PubMedGoogle Scholar
  243. van der Waaij, L. A., Limburg, P. C., Mesander, G., and van der Waaij, D. (1996). In vivo IgA coating of anaerobic bacteria in human faeces. Gut 38:348–354.PubMedGoogle Scholar
  244. van Odijk, J., Kull, I., Borres, M. P., Brandtzaeg, P., Edberg, U., Hanson, L. Å., Host, A., Kuitunen, M., Olsen, S. F., Skerfving, S., Sundell, J., and Wille, S. (2003). Breastfeeding and allergic disease: A multidisciplinary review of the literature (1966–2001) on the mode of early feeding in infancy and its impact on later atopic manifestations. Allergy 58:833–843.PubMedGoogle Scholar
  245. Venkatachalam, M. A., Soltani, M. H., and Fahimi, H. D. (1970). Fine structural localization of peroxidase activity in the epithelium of large intestine of rat. J. Cell. Biol. 46:168–173.PubMedGoogle Scholar
  246. von Reyn, C. F., Arbeit, R. D., Yeaman, G., Waddell, R. D., Marsh, B. J., Morin, P., Modlin, J. F., and Remold, H. G. (1997). Immunization of healthy adult subjects in the United States with inactivated Mycobacterium vaccae administered in a three-dose series. Clin. Infect. Dis. 24:843–848.Google Scholar
  247. Walker, W. A., and Bloch, K. J. (1983). Gastrointestinal transport of macromolecules in the pathogenesis of food allergy. Ann. Allergy 51:240–245.PubMedGoogle Scholar
  248. Walker, W. A., Lake, A. M., and Bloch, K. J. (1982). Immunologic mechanisms for goblet cell mucous release: possible role in mucosal defense. In: Strober, W., Hanson, L. Å., and Sell, K. W. (eds.), Recent Advances in Mucosal Immunity. Raven Press, New York.Google Scholar
  249. Walker, W. A., Wu, M., Isselbacher, K. J., and Bloch, K. J. (1975). Intestinal uptake of macromolecules. III. Studies on the mechanism by which immunization interferes with antigen uptake. J. Immunol. 115:854–861.PubMedGoogle Scholar
  250. Watanabe, T., Kitani, A., Murray, P. J., and Strober, W. (2004). NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat. Immunol. 5:800–808.PubMedGoogle Scholar
  251. Watson, R. R., McMurray, D. N., Martin, P., and Reyes, M. A. (1985). Effect of age, malnutrition and renutrition on free secretory component and IgA in secretion. Am. J. Clin. Nutr. 42:281–288.PubMedGoogle Scholar
  252. Wiedermann, U., Hanson, L. A., Holmgren, J., Kahu, H., and Dahlgren, U. I. (1993). Impaired mucosal antibody response to cholera toxin in vitamin A-deficient rats immunized with oral cholera vaccine [published erratum appears in Infection and Immunity 61:5431]. Infect. Immun. 61:3952–3957.PubMedGoogle Scholar
  253. Wijburg, O. L., Uren, T. K., Simpfendorfer, K., Johansen, F.-E., Brandtzaeg, P., and Strugnell, R. A. (2006). Innate secretory antibodies protect against natural Salmonella typhimurium infection. J. Exp. Med. 203:21–26.PubMedGoogle Scholar
  254. Wijesinha, S. S., and Steer, H. W. (1982). Studies of the immunoglobulin-producing cells of the human intestine: The defunctioned bowel. Gut 23:211–214.PubMedGoogle Scholar
  255. Wohlleben, G., and Erb, K. J. (2001). Atopic disorders: a vaccine around the corner? Trends Immunol. 22:618–626.PubMedGoogle Scholar
  256. Yamanaka, T., Helgeland, L., Farstad, I. N., Midtvedt, T., Fukushima, H., and Brandtzaeg, P. (2003). Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer’s patches. J. Immunol. 170:816–822.PubMedGoogle Scholar
  257. Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., and Akira, S. (2003). Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640–643.PubMedGoogle Scholar
  258. Yamamoto, M., Sato, S., Mori, K., Hoshino, K., Takeuchi, O., Takeda, K., and Akira, S. (2002). Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-p promoter in the Toll-like receptor signaling. J. Immunol. 169:6668–6672.PubMedGoogle Scholar
  259. Yamazaki, K., Shimada, S., Kato-Nagaoka, N., Soga, H., Itoh, T., and Nanno, M. (2005). Accumulation of intestinal intraepithelial lymphocytes in association with lack of polymeric immunoglobulin receptor. Eur. J. Immunol. 35:1211–1219.PubMedGoogle Scholar
  260. Yan, F., and Polk, D. B. (2004). Commensal bacteria in the gut: learning who our friends are. Curr. Opin. Gastroenterol. 20:565–571.PubMedGoogle Scholar
  261. Yasui, H., Kiyoshima, J., and Ushijima, H. (1995). Passive protection against rotavirus-induced diarrhea of mouse pups born to and nursed by dams fed Bifidobacterium breve YIT4064. J. Infect. Dis. 172:403–409.PubMedGoogle Scholar
  262. Yazdanbakhsh, M., Kremsner, P. G., and van Ree, R. (2002). Allergy, parasites, and the hygiene hypothesis. Science 296:490–494.PubMedGoogle Scholar
  263. Yoshida, M., Claypool, S. M., Wagner, J. S., Mizoguchi, E., Mizoguchi, A., Roopenian, D. C., Lencer, W. I., and Blumberg, R. S. (2004). Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20:769–783.PubMedGoogle Scholar
  264. Zoetendal, E. G., Akkermans, A. D. L., Akkermans-van Vliet, W. M., Wisser, J. A. G. M., and de Vos, W. M. (2001). The host genotype affects the bacterial community in the human gastrointestinal tract. Microb. Ecol. Health Dis. 13:129–134.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Per Brandtzaeg
    • 1
  • Finn-Eirik Johansen
    • 1
  1. 1.Department and Institute of PathologyRikshospitalet University HospitalNorway

Personalised recommendations