It is a surprising and often overlooked fact that the majority of the body’s immunoglobulin (Ig) production is geared toward the IgA class. Indeed, the daily synthesis of IgA far outstretches the combined production of all the other Ig classes. Most IgA is produced in mucosa-associated tissue by large numbers of plasma cells in the mucosal subepithelium (Conley and Delacroix, 1987; Mestecky et al., 1991). The necessity for such intensive IgA production at the mucosa presumably reflects a critical requirement, at least in evolutionary terms, for immune protection of mucosal sites. The mucosal surfaces collectively have a huge surface area (~400 m2 in the human adult) (Childers et al., 1989). They represent, by far, the largest area of contact between the immune system and the environment and can be considered an important point of exposure to inhaled and ingested pathogens.


Disulfide Bridge Hinge Region Secretory Component Polymeric Immunoglobulin Receptor IgA1 Hinge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almogren, A., Senior, B. W., Loomes L. M., and Kerr, M. A. (2003). Structural and functional consequences of cleavage of human secretory and human serum immunoglobulin A1 by proteinases from Proteus mirabilis and Neisseria meningitidis. Infect. Immun. 71:3349–3356.CrossRefPubMedGoogle Scholar
  2. Amzel, L. M., and Poljak, R. J. (1979). Three-dimensional structure of immunoglobulins. Annu. Rev. Biochem. 48:961–997.CrossRefPubMedGoogle Scholar
  3. Atkin, J. D., Pleass, R. J., Owens, R. J., and Woof, J. M. (1996). Mutagenesis of the human IgA1 heavy chain tailpiece that prevents dimer assembly. J. Immunol. 157:156–159.PubMedGoogle Scholar
  4. Baenziger, J. U. (1979). Structure of the oligosaccharide of human J chain. J. Biol. Chem. 254:4063–4071.PubMedGoogle Scholar
  5. Bakos, M. A., Kurosky, A., Cwerwinski, E. W., and Goldblum, R. M. (1993). A conserved binding site on the receptor for polymeric Ig is homologous to CDR1 of Ig Vgggggggggggg domains. J. Immunol. 151:1346–1352.PubMedGoogle Scholar
  6. Bastian, A., Kratzin, H., Eckart, K., and Hilschmann, N. (1992). Intra- and inter-chain disulphide bridges of the human J chain in secretory immunoglobulin A. Biol. Chem. Hoppe Seyler 373:1255–1263.PubMedGoogle Scholar
  7. Batten, M. R., Senior, B. W., Kilian, M., and Woof, J. M. (2003). Amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by streptococcal IgA1 proteases. Infect. Immun. 71:1462–1469.CrossRefPubMedGoogle Scholar
  8. Björk, I., and Lindh, E. (1974). Gross conformation of human secretory immunoglobulin A and its component parts. Eur. J. Biochem. 45:135–145.CrossRefPubMedGoogle Scholar
  9. Bloth, B., and Svehag, S. E. (1971). Further studies on the ultrastructure of dimeric IgA of human origin. J. Exp. Med. 133:1035–1042.CrossRefPubMedGoogle Scholar
  10. Boehm, M. K., Woof, J. M., Kerr, M. A., and Perkins S. J. (1999). The Fab and Fc fragments of IgA1 exhibit a different arrangement from that in IgG: a study by X-ray and neutron solution scattering and homology modelling. J. Mol. Biol. 286:1421–1447.CrossRefPubMedGoogle Scholar
  11. Braathen, R., Sorensen, V., Brandtzaeg, P., Sandlie, I., and Johansen, F. E. (2002). The carboxyl-terminal domains of IgA and IgM direct isotype-specific polymerization and interaction with the polymeric immunoglobulin receptor. J. Biol. Chem. 277:42755–42762.CrossRefPubMedGoogle Scholar
  12. Burnett, R. C., Hanly, W. C., Zhai, S. K., and Knight K. L. (1989). The IgA heavy chain gene family in rabbit: cloning and sequence analysis of 13 Ce genes. EMBO J. 8:4041–4047.PubMedGoogle Scholar
  13. Cann, G. M., Zaritsky, A., and Koshland, M. E. (1982). Primary structure of the immunoglobulin J chain from the mouse. Proc. Natl. Acad. Sci. USA 79:6656–6660.CrossRefPubMedGoogle Scholar
  14. Carayannopoulos, L., Hexham, J. M., and Capra, J. D. (1996). Localization of the binding site for the monocyte immunoglobulin (Ig) A-Fc receptor (CD89) to the domain boundary between Ci2 and C23 in human IgA1. J. Exp. Med. 183:1579–1586.CrossRefPubMedGoogle Scholar
  15. Chapuis, R. M., and Koshland, M. E. (1975). Linkage and assembly of polymeric IgA immunoglobulins. Biochemistry 14:1320–1326.CrossRefPubMedGoogle Scholar
  16. Childers, N. K., Bruce, M. G., and McGhee, J. R. (1989). Molecular mechanisms of immunoglobulin A defense. Annu. Rev. Immunol. 43:503–536.Google Scholar
  17. Chintalacharuvu, K. R., Chuang, P. D., Dragoman, A., Fernandez, C. Z., Qiu, J., Plaut, A. G., Trinh, K. R., Gala, F. A., and Morrison, S. L. (2003). Cleavage of the human immunoglobulin A1 (IgA1) hinge region by IgA1 proteases requires structures in the Fc region of IgA. Infect. Immun. 71:2563–2570.CrossRefPubMedGoogle Scholar
  18. Chintalacharuvu, K. R., Raines, M., and Morrison, S. L. (1994). Divergence of human v-chain constant region gene sequences: A novel recombinant b2 gene. J. Immunol. 152:5299–5304.PubMedGoogle Scholar
  19. Chuang, P. D., and Morrison, S. L. (1997). Elimination of N-linked glycosylation sites from the human IgA1 constant region: Effects on structure and function. J. Immunol. 158:724–732.PubMedGoogle Scholar
  20. Conley, M. E., and Delacroix, D. L. (1987). Intravascular and mucosal immunoglobulin A: Two separate but related systems of immune defense? Ann. Intern. Med. 106:892–899.PubMedGoogle Scholar
  21. Coyne, R. S., Siebrecht, M., Peitsch, M. C., and Casanova, J. E. (1994). Mutational analysis of polymeric immunoglobulin receptor/ligand interactions. Evidence for the involvement of multiple complementarity determining region (CDR)-like loops in receptor domain I. J. Biol. Chem. 269:31620–31625.PubMedGoogle Scholar
  22. Crago, S. S., Kutteh, W. H., Moro, I., Allansmith, M. R., Radl, J., Haaijman, J. J., and Mestecky, J. (1984). Distribution of IgA1-, IgA2-, and J chain-containing cells in human tissues. J. Immunol. 132:16–18.PubMedGoogle Scholar
  23. Crottet, P., and Corthésy, B. (1998). Secretory component delays the conversion of secretory IgA into antigen-binding F(ab')2: A possible implication for mucosal defence. J. Immunol. 161:5445–5453.PubMedGoogle Scholar
  24. Dourmashkin, R. R., Virella, G., and Parkhouse, R. M. (1971). Electron microscopy of human and mouse myeloma serum IgA. J. Mol. Biol. 56:207–208.CrossRefPubMedGoogle Scholar
  25. Dudich, E. I., Dudich, I. V., and Timofeev, V. P. (1980). Fluorescence polarization and spin-label study of human myeloma immunoglobulins A and M. Presence of segmental flexibility. Mol. Immunol. 17:1335–1339.CrossRefPubMedGoogle Scholar
  26. Fallgren-Gebauer, E., Gebauer, W., Bastian, A., Kratzin, H., Eiffert, H., Zimmerman, B., Karas, M., and Hilschmann, N. (1995). The covalent linkage of the secretory component to IgA. Adv. Exp. Med. Biol. 371A:625–628.PubMedGoogle Scholar
  27. Field, M. C., Amatayakul-Chantler, S., Rademacher, T. W., Rudd, P. M., and Dwek, R. A. (1994). Structural analysis of the N-glycans from human immunoglobulin A1: comparison of normal human serum immunoglobulin A1 with that isolated from patients with rheumatoid arthritis. Biochem. J. 299:261–275.PubMedGoogle Scholar
  28. Frithz, E., Héden, L. O., and Lindahl, G. (1989). Extensive sequence homology between IgA receptor and M proteins in Streptococcus pyogenes. Mol. Microbiol. 3:1111–1119.CrossRefPubMedGoogle Scholar
  29. Frutiger, S., Hughes, G. J., Paquet, N., Luthy, R., and Jaton, J. C. (1992). Disulfide bond assignment in human J chain and its covalent pairing with immunoglobulin M. Biochemistry 31:12643–12647.CrossRefPubMedGoogle Scholar
  30. Furtado, P. B., Whitty, P. W., Robertson, A., Eaton, J. T., Almogren, A., Kerr, M. A., Woof, J. M., and Perkins S. J. (2004). Solution structure determination of monomeric human IgA2 by X-ray and neutron scattering, analytical ultracentrifugation and constrained modelling: A comparison with monomeric human IgA1. J. Mol. Biol. 338:921–941.CrossRefPubMedGoogle Scholar
  31. Gala, F. A., and Morrison, S. L. (2002). The role of constant region carbohydrate in the assembly and secretion of human IgD and IgA1. J. Biol. Chem. 277:29005–29011.CrossRefPubMedGoogle Scholar
  32. Guddat, L. W., Herron, J. N., Edmundson, A. B. (1993). Three-dimensional structure of a human immunoglobulin with a hinge deletion. Proc. Natl. Acad. Sci. USA 90:4271–4275.CrossRefPubMedGoogle Scholar
  33. Halpern, M. S., and Koshland, M. E. (1973). The stoichiometry of J chain in human secretory IgA. J. Immunol. 111:1653–1660.PubMedGoogle Scholar
  34. Hamburger, A. E., West, A. P., Jr., and Bjorkman, P. J. (2004). Crystal structure of a polymeric immunoglobulin binding fragment of the human polymeric immunoglobulin receptor. Structure (Camb.) 12:1925–1935.CrossRefGoogle Scholar
  35. Héden, L. O., Frithz, E., and Lindahl, G. (1991). Molecular characterization of an IgA receptor from group B streptococci: Sequence of the gene, identification of a proline-rich region with unique structure and isolation of N-terminal fragments with IgA-binding capacity. Eur. J. Immunol. 21:1481–1490.CrossRefPubMedGoogle Scholar
  36. Herr, A. B., Ballister, E. R., and Bjorkman, P. J. (2003). Insights into IgA-mediated immune responses from the crystal structures of human FcHRI and its complex with IgA1-Fc. Nature 423:614–620.CrossRefPubMedGoogle Scholar
  37. Hexham, J. M., White, K. D., Carayannopoulos, L. N., Mandecki, W., Brisette, R., Yang, Y. S., and Capra, J. D. (1999). A human immunoglobulin (Ig) A C 3 domain motif directs polymeric Ig receptor-mediated secretion. J. Exp. Med. 189:747–752.CrossRefPubMedGoogle Scholar
  38. Hohman, V. S., Stewart, S. E., Rumfelt, L. L., Greenberg, A. S., Avila, D. W., Flajnik, M. F., and Steiner, L. A. (2003). J chain in the nurse shark: Implications for function in a lower vertebrate. J. Immunol. 170:6016–6023.PubMedGoogle Scholar
  39. Johansen, F. E., Braathen, R., and Brandtzaeg, P. (2001). The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA. J. Immunol. 167:5185–5192.PubMedGoogle Scholar
  40. Kaetzel, C. S., and Mostov, K. E. (2005). Immunoglobulin transport and the polymeric immunoglobulin receptor. In: Mestecky, J., Bienenstock, J., Lamm, M. E., Mayer, L., McGhee, J. R., and Strober W. (eds.), Mucosal Immunology, 3rd ed. Elsevier/Academic Press, Amsterdam, pp. 211–250.Google Scholar
  41. Kawamura, S., Saitou, N., and Ueda, S. (1992). Concerted evolution of the primate immunoglobulin m-gene through gene conversion. J. Biol. Chem. 267:7359–7367.PubMedGoogle Scholar
  42. Kett, K., Brandtzaeg, P., Radl, J., and Haaijman, J. J. (1986). Different subclass distribution of IgA-producing cells in human lymphoid organs and various secretory tissues. J. Immunol. 136:3631–3635.PubMedGoogle Scholar
  43. Kobayashi, K., Vaerman, J.-P., Bazin, H., Lebacq-Verheyden, A.-M., and Heremans, J. F. (1973). Identification of J-chain in polymeric immunoglobulins from a variety of species by cross-reaction with rabbit antisera to human J-chain. J. Immunol. 111:1590–1594.PubMedGoogle Scholar
  44. Koshland, M. E. (1985). The coming of age of the immunoglobulin J chain. Annu. Rev. Immunol. 3:425–453.CrossRefPubMedGoogle Scholar
  45. Krugmann, S., Pleass, R. J., Atkin, J. D., and Woof, J. M. (1997). Structural requirements for assembly of dimeric IgA probed by site-directed mutagenesis of J chain and a cysteine residue of the p chain CH2 domain. J. Immunol. 159:244–249.PubMedGoogle Scholar
  46. Kutteh, W. H., Moldoveanu, Z., Prince, S. J., Kulhavy, R., Alonso, F., and Mestecky, J. (1983). Biosynthesis of J chain in human lymphoid cells producing immunoglobulins of various isotypes. Mol. Immunol. 20:967–976.CrossRefPubMedGoogle Scholar
  47. Lewis, M. J., Pleass, R. J., Atkin, J. D., Batten, M. R., and Woof, J. M. (2005). Structural requirements for the interaction of human immunoglobulin A with the human polymeric immunoglobulin receptor. J. Immunol. 175:6694–6701.PubMedGoogle Scholar
  48. Liu, B. M., Cheung, H. C., and Mestecky, J. (1981). Nanosecond fluorescence spectroscopy of human immunoglobulin A. Biochemistry 20:1997–2003.CrossRefPubMedGoogle Scholar
  49. Mattu, T. S., Pleass, R. J., Willis, A. C., Kilian, M., Wormald, M. R., Lellouch, A. C., Rudd, P. M., Woof, J. M., and Dwek, R. A. (1998). The glycosylation and structure of human serum IgA1, Fab and Fc regions and the role of N-glycosylation on Fcs receptor interactions. J. Biol. Chem. 273:2260–2272.CrossRefPubMedGoogle Scholar
  50. Mendez, E., Prelli, F., Frangione, B., and Franklin, E. C. (1973). Characterization of a disulphide bridge linking the J chain to the , chain of polymeric immunoglobulin A. Biochem. Biophys. Res. Commun. 55:1291–1297.CrossRefPubMedGoogle Scholar
  51. Mestecky, J., Kulhavy R., and Kraus, F. W. (1972). Studies on human secretory immunoglobulin A. II. Subunit structure. J. Immunol. 108:738–747.PubMedGoogle Scholar
  52. Mestecky, J., Lue, C., and Russell, M. W. (1991). Selective transport of IgA: Cellular and molecular aspects. Gastroenterol. Clin. North Am. 20:441–471.PubMedGoogle Scholar
  53. Mestecky, J., Schrohenloher, R. E., Kulhavy, R., Wright, G. P., and Tomana, M. (1974). Site of J chain attachment to human polymeric IgA. Proc. Natl. Acad. Sci. USA 71:544–548.CrossRefPubMedGoogle Scholar
  54. Mikoryak, C. A., Margolies, M. N., and Steiner, L. A. (1988). J chain in Rana catesbiana high molecular weight Ig. J. Immunol. 140:4279–4285.PubMedGoogle Scholar
  55. Moldoveanu, Z., Egan, M. L., and Mestecky, J. (1984). Cellular origins of human polymeric and monomeric IgA: Intracellular and secreted forms of IgA. J. Immunol. 133:3156–3162.PubMedGoogle Scholar
  56. Mole, J. E., Bhown, A. S., and Bennett, J. C. (1976). Sequence analysis of human J chain. Amino terminal location of a disulphide bond linking the immunoglobulin heavy chain. Biochem. Biophys. Res. Commun. 73:92–97.CrossRefPubMedGoogle Scholar
  57. Mosmann, T. R., Gravel, Y., Williamson, A. R., and Baumal, R. (1978). Modification and fate of J chain in myeloma cells in the presence and absence of polymeric immunoglobulin secretion. Eur. J. Immunol. 8:94–101.CrossRefPubMedGoogle Scholar
  58. Mostov, K. E., Kraehenbuhl, J. P., and Blobel, G. (1980). Receptor-mediated transcellular transport of immunoglobulin: synthesis of secretory component as multiple and larger transmembrane forms. Proc. Natl. Acad. Sci. USA 77:7257–7261.CrossRefPubMedGoogle Scholar
  59. Munn, E. A., Feinstein, A., and Munro, A. J. (1971). Electron microscope examination of free IgA molecules and of their complexes with antigen. Nature 231:527–529.CrossRefPubMedGoogle Scholar
  60. Natvig, I. B., Johansen, F. E., Nordeng, T. W., Haraldsen, G., and Brandtzaeg, P. (1997). Mechanism for enhanced external transfer of dimeric IgA over pentameric IgM: studies of diffusion, binding to the human polymeric Ig receptor, and epithelial transcytosis. J. Immunol. 159:4330–4340.PubMedGoogle Scholar
  61. Niedermeier, W., Tomana, M., and Mestecky, J. (1972). The carbohydrate composition of J chain from human serum and secretory IgA. Biochim. Biophys. Acta 257:527–530.PubMedGoogle Scholar
  62. Norderhaug, I. N., Johansen, F. E., Krajci, P., and Brandtzaeg, P. (1999). Domain deletions in the human polymeric Ig receptor disclose differences between its dimeric and pentameric IgM interaction. Eur. J. Immunol. 29:3401–3409.CrossRefPubMedGoogle Scholar
  63. Parkhouse, R. M. E. (1971). Immunoglobulin A biosynthesis. Intracellular accumulation of 7S subunits. FEBS Lett. 16:71–73.CrossRefPubMedGoogle Scholar
  64. Phalipon, A., Cardona, A., Kraehenbuhl, J. P., Edelman, L., Sansonetti, P. J., and Corthésy, B. (2002). Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17:107–115.Google Scholar
  65. Plaut, A. G. (1983). The IgA1 proteases of pathogenic bacteria. Annu. Rev. Microbiol. 37:603–622.CrossRefPubMedGoogle Scholar
  66. Pleass, R. J., Areschoug, T., Lindahl, G., and Woof, J. M. (2001). Streptococcal IgA-binding proteins bind in the C 2–C23 interdomain region and inhibit binding of IgA to human CD89. J. Biol. Chem. 276:8197–8204.CrossRefPubMedGoogle Scholar
  67. Pleass, R. J., Dunlop, J. I., Anderson, C. M., and Woof, J. M. (1999). Identification of residues in the CH2/CH3 domain interface of IgA essential for interaction with the human Fct receptor (Fc R) CD89. J. Biol. Chem. 274:23508–23514.CrossRefPubMedGoogle Scholar
  68. Prahl, J. W., Abel, C. A., and Grey, H. M. (1971). Carboxy-terminal structure of the P chain of human IgA myeloma proteins. Biochemistry 10:1808–1812.CrossRefPubMedGoogle Scholar
  69. Roux, K. H., Strelets, L., Brekke, O. H., Sandlie, I., and Michaelsen, T. E. (1998). Comparisons of the ability of human IgG3 hinge mutants, IgM, IgE, and IgA2, to form small immune complexes: A role for flexibility and geometry. J. Immunol. 161:4083–4090.PubMedGoogle Scholar
  70. Royle, L., Roos, A., Harvey, D. J., Wormald, M. R., van Gijlswijk-Janssen, D., Redwan, El-R. M., Wilson, I. A., Daha, M. R., Dwek, R. A., and Rudd, P. M. (2003). Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J. Biol. Chem. 278:20140–20153.CrossRefPubMedGoogle Scholar
  71. Saphire, E. O., Stanfield, R. L., Crispin, M. D., Parren, P. W., Rudd, P. M., Dwek, R. A., Burton, D. R., and Wilson, I. A. (2002). Contrasting IgG structures reveal extreme asymmetry and flexibility. J. Mol. Biol. 319:9–18.CrossRefPubMedGoogle Scholar
  72. Satow, Y., Cohen, G. H., Padlan, E. A., and Davies, D. R. (1986). Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 Å. J. Mol. Biol. 190:593–604.CrossRefPubMedGoogle Scholar
  73. Senior, B. W., Dunlop, J. I., Batten, M. R., Kilian, M., and Woof, J. M. (2000). Cleavage of a recombinant human immunoglobulin A2 (IgA2)–IgA1 hybrid antibody by certain bacterial IgA1 proteases. Infect. Immun. 68:463–469.CrossRefPubMedGoogle Scholar
  74. Senior, B. W., and Woof, J. M. (2005a). Effect of mutations in the human immunoglobulin A1 (IgA1) hinge on its susceptibility to cleavage by diverse bacterial IgA1 proteases. Infect. Immun. 73:1515–1522.CrossRefPubMedGoogle Scholar
  75. Senior, B. W., and Woof, J. M. (2005b). The influences of hinge length and composition on the susceptibility of human IgA to cleavage by diverse bacterial IgA1 proteases. J. Immunol. 174:7792–7799.PubMedGoogle Scholar
  76. Senior, B. W., and Woof, J. M. (2006). Sites in the CH3 domain of human IgA1 that influence sensitivity to bacterial IgA proteases. J. Immunol. 177:3913–3919.PubMedGoogle Scholar
  77. Spieker-Polet, H., Yam, P. C., and Knight, K. L. (1993). Differential expression of 13 IgA-heavy chain genes in rabbit lymphoid tissues. J. Immunol. 150:5457–5465.PubMedGoogle Scholar
  78. Stenberg, L., O’Toole, P. W., Mestecky, J., and Lindahl, G. (1994). Molecular characterization of protein Sir, a streptococcal cell surface protein that binds both immunoglobulin A and immunoglobulin G. J. Biol. Chem. 269:13458–13464.PubMedGoogle Scholar
  79. Suh, S. W., Bhat, T. N., Navia, M. A., Cohen, G. H., Rao, D. N., Rudikoff, S., and Davies, D. R. (1986). The galactan-binding immunoglobulin Fab J539: An X-ray diffraction study at 2.6-Å resolution. Proteins 1:74–80.CrossRefPubMedGoogle Scholar
  80. Tarelli, E., Smith, A. C., Hendry, B. M., Challacombe, S. J., and Pouria, S. (2004). Human serum IgA1 is substituted with up to six O-glycans as shown by matrix assisted laser desorption ionisation time-of-flight mass spectrometry. Carbohydrate Res. 339:2329–2335.CrossRefGoogle Scholar
  81. Tomana, M., Niedermeier, W., Mestecky, J., and Skvaril, F. (1976). The differences in carbohydrate composition between the subclasses of IgA immunoglobulins. Immunochemistry 13:325–328.CrossRefPubMedGoogle Scholar
  82. Underdown, B. J., DeRose, J., and Plaut, A. (1977). Disulfide bonding of secretory component to a single monomer subunit in human secretory IgA. J. Immunol. 118:1816–1821.PubMedGoogle Scholar
  83. White, K. D., and Capra, J. D. (2002). Targeting mucosal sites by polymeric immunoglobulin receptor-directed peptides. J. Exp. Med. 196:551–555.CrossRefPubMedGoogle Scholar
  84. Williams, A. F., and Barclay, A. N. (1988). The immunoglobulin superfamily: Domains for cell surface recognition. Annu. Rev. Immunol. 6:381–405.PubMedGoogle Scholar
  85. Wines, B. D., Willoughby, N., Fraser, J. D., and Hogarth, P. M. (2006). A competitive mechanism for staphylococcal toxin SSL7 inhibiting the leukocyte IgA receptor, FccRI, is revealed by SSL7 binding at the CR2/C23 interface of IgA. J. Biol. Chem. 281:1389–1393.CrossRefPubMedGoogle Scholar
  86. Woof, J. M., and Burton, D. R. (2004). Human antibody–Fc receptor interactions illuminated by crystal structures. Nat. Rev. Immunol. 4:89–99.CrossRefPubMedGoogle Scholar
  87. Yoo, E. M., Coloma, M. J., Trinh, K. R., Nguyen, T. Q., Vuong, L. U., Morrison, S. L., and Chintalacharuvu K. R. (1999). Structural requirements for polymeric immunoglobulin assembly and association with J chain. J. Biol. Chem. 274:33771–33777.CrossRefPubMedGoogle Scholar
  88. Zagyansky, Y. A., and Gavrilova, E. M. (1974). Segmental flexibility of human myeloma immunoglobulins A. Immunochemistry 11:681–682.CrossRefPubMedGoogle Scholar
  89. Zikan, J., Mestecky, J., Kulhavy, R., and Bennett, J. C. (1986). The stoichiometry of J chain in human secretory dimeric IgA. Mol. Immunol. 23:541–544.CrossRefPubMedGoogle Scholar
  90. Zikan, J., Novotny, J., Trapane, T. L., Koshland, M. E., Urry, D. W., Bennett, J. C., and Mestecky, J. (1985). Secondary structure of the immunoglobulin J chain. Proc. Natl. Acad. Sci. USA 82:5905–5909.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jenny M. Woof
    • 1
  1. 1.Division of Pathology and NeuroscienceUniversity of Dundee Medical School, Ninewells HospitalUK

Personalised recommendations