Skip to main content

Hepatic Regulation of Fuel Metabolism

  • Chapter
Mechanisms of Insulin Action

Abstract

It has been recognized for more than a century that the liver plays an important role in maintaining metabolic fuel homeostasis. The purpose of this chapter is to summarize mechanisms by which circulating glucose and lipid concentrations are controlled by hepatic metabolic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell GI, Kayano T, Buse JB et al. Molecular biology of mammalian glucose transporters. Diabetes Care 1990; 13:198–208.

    PubMed  CAS  Google Scholar 

  2. Thorens B, Charron MJ, Lodish HF. Molecular physiology of glucose transporters. Diabetes Care 1990; 13:209–18.

    PubMed  CAS  Google Scholar 

  3. Thorens B, Sarkar HK, Kaback HR et al. Cloning and functional expression in bacteria of a novel glucose transporter in liver, intestine, kidney, and beta-pancreatic islet cells. Cell 1988; 55:281–90.

    PubMed  CAS  Google Scholar 

  4. Johnson JH, Newgard CB, Milburn JL et al. The high Km glucose transporter of islets of langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J Biol Chem 1990; 265:6548–6551.

    PubMed  CAS  Google Scholar 

  5. Guillam MT, Hummler E, Schaerer E et al. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking GLUT-2. Nature Genetics 1997; 17:327–330.

    PubMed  CAS  Google Scholar 

  6. Guillam MT, Burcelin R, Thorens B. Normal hepatic glucose production in the absence of GLUT2 reveals an alternative pathway for glucose release from hepatocytes. Proc Natl Acad Sci USA 1998; 95:12317–12321.

    PubMed  CAS  Google Scholar 

  7. Burcelin R, del Carmen Munoz M, Guillan MT et al. Liver hyperplasia and paradoxical regulation of glycogen metabolism and glucose-sensitive gene expression in GLUT2-null hepatocytes. Further evidence for the existence of a membrane-based glucose release pathway. J Biol Chem 2000; 275:10930–10936.

    PubMed  CAS  Google Scholar 

  8. Matschinsky FM. Regulation of pancreatic beta-cell glucokinase: From basic to therapeutics. Diabetes 2002; 51(Suppl 3):S394–404.

    PubMed  CAS  Google Scholar 

  9. Hughes SD, Quaade C, Milburn JL et al. Expression of normal and novel glucokinase mRNAs in anterior pituitary and islet cells. J Biol Chem 1991; 266:4521–4530.

    PubMed  CAS  Google Scholar 

  10. Jetton TL, Liang Y, Pettepher CC et al. J Biol Chem 1994; 269:3641–54.

    PubMed  CAS  Google Scholar 

  11. Wilson JE. Regulation of mammalian hexokinase activity. In: Beitner R, ed. Regulation of carbohydrate metabolism. Boca Raton: CRC Press, 1984:45–85.

    Google Scholar 

  12. Newgard CB. Regulatory role of glucose transport and phosphorylation in pancreatic islet β-cells. Diabetes Reviews 1996; 4:191–205.

    Google Scholar 

  13. Malaisse WJ, Malaisse-Lagae F, Davies DR et al. Regulation of glucokinase by a fructose-1-phosphate-sensitive protein in pancreatic islets. Eur J Biochem 1990; 190:539–545.

    PubMed  CAS  Google Scholar 

  14. Dethuex M, Vandekerckhove J, Van Schaftingen E. Cloning and sequencing of rat liver cDNAs encoding the regulatory protein of glucokinase. FEBS Lett 1994; 321: 111–115.

    Google Scholar 

  15. Iynedjian PB, Ucla C, Mach B. Molecular cloning of glucokinase cDNA: Developmental and dietary regulation of glucokinase mRNA in rat liver. J Biol Chem 1987; 262:6032–38.

    PubMed  CAS  Google Scholar 

  16. Andreone TL, Printz RL, Pilkis SJ et al. The amino acid sequence of rat liver glucokinase deduced from cloned cDNA. J Biol Chem 1989; 264:363–69.

    PubMed  CAS  Google Scholar 

  17. Iynedjian PB, Pilot P-R, Nouspikel T et al. Differential expression and regulation of the glucokinase gene in liver and islets: Implications for control of glucose homeostasis. Proc Natl Acad Sci USA 1989; 86:7838–42.

    PubMed  CAS  Google Scholar 

  18. Toyoda Y, Miwa I, Satake S et al. Nuclear location of the regulatory protein of glucokinase in rat liver and translocation of the regulator to the cytoplasm in response to high glucose. Biochem Biophys Res Comm 1995; 215:467–473.

    PubMed  CAS  Google Scholar 

  19. Brown KS, Kalinowski SS, Megill JR et al. Glucokinase regulatory protein may interact with glucokinase in the hepatocyte nucleus. Diabetes 1997; 46:179–186.

    PubMed  CAS  Google Scholar 

  20. Shiota C, Coffey J, Grimsby J et al. Nuclear import of hepatic glucokinase depends upon glucokinase regulatory protein, whereas export is due to a nuclear export signal sequence in glucokinase. J Biol Chem 1999; 274:37125–37130.

    PubMed  CAS  Google Scholar 

  21. Farrelly D, Brown KS, Tieman A et al. Mice mutant for glucokinase regulatory protein exhibit decreased liver glucokinase: A sequestration mechanism in metabolic regulation. Proc Natl Acad Sci USA 1999; 96:14511–14516.

    PubMed  CAS  Google Scholar 

  22. Grimsby J, Coffey JW, Dvorozniak MT et al. Characterization of glucokinase regulatory protein-deficient mice. J Biol Chem 2000; 275:7826–7831.

    PubMed  CAS  Google Scholar 

  23. Vehlo G, Frougel P, Clement K et al. Primary pancreatic beta-cell secretory defect caused by mutations in glucokinase gene in kindreds of maturity onset diabetes of the young. Lancet 1992; 340:444–48.

    Google Scholar 

  24. Byrne MM, Sturis J, Clement K et al. Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J Clin Invest 1994; 93:1122–30.

    Google Scholar 

  25. Newgard CB, Matschinsky FM. Substrate Control of Insulin Release. In: Jefferson J, Cherrington A, eds. Handbook of Physiology, Vol II. Oxford Univ. Press, 2001:125–152.

    Google Scholar 

  26. Frougel P, Zouali H, Vionnet N et al. Familial hyperglycemia due to mutations in glucokinase. N Engl J Med 1993; 328:697–702.

    Google Scholar 

  27. Velho G, Petersen KF, Perseghin G et al. Impaired hepatic glycogen synthesis in glucokinase-deficient (MODY-2) subjects. J Clin Invest 1996; 98:1755–1761.

    PubMed  CAS  Google Scholar 

  28. Gidh-Jain M, Takeda J, Xu LZ et al. Glucokinase mutations associated with noninsulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: Implications for structure/function relationships. Proc Natl Acad Sci USA 1993; 90:1932–36.

    PubMed  CAS  Google Scholar 

  29. Liang Y, Kesavan P, Wang L et al. Variable effects of maturity-onset-diabetes of youth (MODY)-associated glucokinase mutations on substrate interactions and stability of the enzyme. Biochem J 1995; 309:167–73.

    PubMed  CAS  Google Scholar 

  30. Glaser B, Kesavan P, Heyman M et al. Familial hypoinsulinism caused by an inactivating glucokinase mutation. N Engl J Med 1998; 338:226–240.

    PubMed  CAS  Google Scholar 

  31. Grupe A, Hultgren B, Ryan A et al. Transgenic knockouts reveal a critical requirement for pancreatic β-cell glucokinase in maintaining glucose homeostasis. Cell 1995; 83:69–78.

    PubMed  CAS  Google Scholar 

  32. Bali D, Svetlanov A, Lee H-W et al. Animal model for maturity-onset diabetes of the young generated by disruption of the mouse glucokinase gene. J Biol Chem 1995; 270:21464–67.

    PubMed  CAS  Google Scholar 

  33. Terauchi Y, Sakura H, Yasuda K et al. Pancreatic β-cell-specific targeted disruption of glucokinase gene. J Biol Chem 1995; 270:30253–256.

    PubMed  CAS  Google Scholar 

  34. O’Doherty RM, Lehman DL, Seoane J et al. Differential metabolic effects of adenovirus-mediated glucokinase and hexokinase I overexpression in rat primary hepatocytes. J Biol Chem 1996; 271:20524–20530.

    Google Scholar 

  35. Seoane J, Gomez-Foix AM, O’Doherty RM et al. Glucose-6-phosphate produced by glucokinase, but not hexokinase is the signal for the activation of hepatic glycogen synthase. J Biol Chem 1996; 271:23756–23760.

    PubMed  CAS  Google Scholar 

  36. O’Doherty RM, Lehman DL, Telemaque-Potts S et al. Metabolic impact of glucokinase overexpression in liver: Lowering of blood glucose in fed rats is accompanied by hyperlipidemia. Diabetes 1999; 48:2022–20277.

    Google Scholar 

  37. Niswender KD, Shiota M, Postic C et al. Effects of increased glucokinase gene copy number on glucose homeostasis and hepatic glucose metabolism. J Biol Chem 1997; 272:22570–22575.

    PubMed  CAS  Google Scholar 

  38. Ferre T, Pujol A, Riu E et al. Correction of diabetic alterations by glucokinase. Proc Natl Acad Sci USA 1996; 93:7225–7230.

    PubMed  CAS  Google Scholar 

  39. Grimsby J, Sarabu R, Corbett WL et al. Allosteric activators of glucokinase: Potential role in diabetes therapy. Science 2003; 301:370–373.

    PubMed  CAS  Google Scholar 

  40. Van Schaftingen E, Hue L, Hers HG. Fructose-2,6-bisphosphate, the probable structure of the glucose and glucagon-sensitive stimulator of phosphofructokinase. Biochem J 1980; 192:897–901.

    PubMed  Google Scholar 

  41. Pilkis SJ, El-Maghrabi MR, Pilkis J et al. Fructose-2,6-bisphosphate. A new activator of phosphofructokinase. J Biol Chem 1981; 256:3171–3174.

    PubMed  CAS  Google Scholar 

  42. Uyeda K, Furuya E, Sherry AD. The structure of “activation factor” for phosphofructokinase. J Biol Chem 1981; 256:8679–8684.

    PubMed  CAS  Google Scholar 

  43. Murray KJ, El-Maghrabi MR, Kountz PD et al. Amino acid sequence of the phosphorylation site of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem 1984; 259:7673–7681.

    PubMed  CAS  Google Scholar 

  44. Nishimura M, Uyeda K. Purification and characterization of a novel xyulose 5-phosphate-activated protein phosphatase catalyzing dephosphorylation of fructose-6-phosphate, 2 kinase: Fructose-2,6-bisphosphatase. J Biol Chem 1995; 270:26341–26346.

    PubMed  CAS  Google Scholar 

  45. Argaud D, Lange AJ, Becker TC et al. Adenovirus-mediated overexpression of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in gluconeogenic rat hepatoma cells. Paradoxical effect on Fru-2,6-P2 levels. J Biol Chem 1995; 270:24229–24236.

    PubMed  CAS  Google Scholar 

  46. Wu C, Okar DA, Newgard CB et al. Overexpression of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase in mouse liver lowers blood glucose by suppressing hepatic glucose production. J Clin Invest 2001; 107:91–98.

    Article  PubMed  CAS  Google Scholar 

  47. Wu C, Okar DA, Newgard CB et al. Increasing fructose 2,6-bisphosphate overcomes hepatic insulin resistance of type 2 diabetes. Am J Physiol Endocrinol Metab 2002; 282:E38–45.

    PubMed  CAS  Google Scholar 

  48. Yamashita H, Takenoshita M, Sakurai M et al. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci USA 2001; 98:9116–9121.

    PubMed  CAS  Google Scholar 

  49. Kabashima T, Kawaguchi T, Wadzinski BE et al. Xyulose-5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci USA 2003; 100:5107–5112.

    PubMed  CAS  Google Scholar 

  50. Engstrom D, Ekman P, Humble E et al. Pyruvate kinase. Enzymes 1987; 18:47–75.

    Google Scholar 

  51. Nordlie RC. Metabolic regulation by multifunctional glucose-6-phosphatase. Curr Topic Cell Reg 1974; 8:33–117.

    CAS  Google Scholar 

  52. Arion WJ, Lange AJ, Walls EH et al. Evidence for the participation of independent translocation for phosphate and glucose 6-phosphate in the microsomal glucose-6-phosphatase system. Interactions of the system with orthophosphate, inorganic pyrophosphate, and carbamyl phosphate. J Biol Chem 1980; 255:10396–10406.

    PubMed  CAS  Google Scholar 

  53. Lange AJ, Arion WJ, Beaudet AL. Type 1b glycogen storage disease is caused by a defect in the glucose-6-phosphate translocase of the glucose-6-phosphatase system. J Biol Chem 1980; 255:8381–8384.

    PubMed  CAS  Google Scholar 

  54. McGarry JD. Banting lecture 2001: Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002; 51:7–18.

    PubMed  CAS  Google Scholar 

  55. Tsai CS, Burgett MW, Reed LJ. α-keto acid dehydrogenase complexesXX: A kinetic study of the pyruvate dehydrogenase complex from bovine kidney. J Biol Chem 1973; 248:8348–8352.

    PubMed  CAS  Google Scholar 

  56. Denton RM, Randle PJ, Bridges BJ et al. Regulation of mammalian pyruvate dehydrogenase. Mol Cell Biochem 1975; 9:27–53.

    PubMed  CAS  Google Scholar 

  57. Sugden MC, Holness MJ. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol 2003; 284:E855–862.

    CAS  Google Scholar 

  58. Pettit FH, Pelley JW, Reed LJ. Regulation of pyruvate dehydrogenase kinase and phosphatase by acetyl CoA/CoA and NADH/NAD ratios. Biochem Biophys Res Comm 1975; 65:575–582.

    PubMed  CAS  Google Scholar 

  59. Ashman LK, Wallace JC, Keech DB. Desensitization of pyruvate carboxylase against acetyl CoA stimulation by chemical modification. Biochem Biophys Res Comm 1975; 51:924–931.

    Google Scholar 

  60. Warren GB, Tipton KF. The role of acetyl CoA in the reaction pathway of pig-liver pyruvate carboxylase. Eur J Biochem 1974; 47:549–554.

    PubMed  CAS  Google Scholar 

  61. Jin ES, Uyeda K, Kawaguchi T et al. Increased hepatic fructose-2,6-bisphosphate after an oral glucose load does not affect gluconeogenesis. J Biol Chem 2003; 278:28427–28433.

    PubMed  CAS  Google Scholar 

  62. Quinn PG, Wong TW, Magnuson MA et al. Identification of the basal and cAMP regulatory elements in the promoter of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol 1988; 8:3467–75.

    PubMed  CAS  Google Scholar 

  63. Park EA, Roesler WJ, Liu J et al. The role of the CCAAT/enhancer-binding protein in the transcriptional regulation of the gene for phosphoenolpyruvate carboxykinase (GTP). Mol Cell Biol 1990; 10:6264–72.

    PubMed  CAS  Google Scholar 

  64. Waltner-Law M, Duong D, Daniels MC et al. Elements of the Glucocorticoid and Retinoic Acid Response Units are Involved in cAMP-mediated Expression of the PEPCK Gene. J Biol Chem 2003; 278;in press.

    Google Scholar 

  65. Sasaki K, Cripe TP, Koch SR et al. Multihormonal regulation of phosphoenolpyruvate carboxykinase gene transcription: Dominant role of insulin. J Biol Chem 1984; 259:15242–51.

    PubMed  CAS  Google Scholar 

  66. Duong DT, Waltner-Law M, Sears R et al. Insulin inhibits hepatocellular glucose production by disrupting the association of CBP and RNA polymerase II with the PEPCK gene promoter. J Biol Chem 2002; 277:32234–242.

    PubMed  CAS  Google Scholar 

  67. Sasaki K, Granner DK. Regulation of phosphoenolpyruvate carboxykinase gene transcription by insulin and cAMP: Reciprocal actions on initiation and elongation. Proc Nat Acad Sci USA 1988; 85:2954–2958.

    PubMed  CAS  Google Scholar 

  68. Liu Z, Barrett EJ, Dalkin AC et al. Effect of acute diabetes on rat hepatic glucose-6-phosphatase activity and its messenger RNA level. Biochem Biophys Res Comm 1994; 205:680–686.

    PubMed  CAS  Google Scholar 

  69. Massillon D, Barzilai N, Chen W et al. Glucose regulates in vivo glucose-6-phosphatase gene expression in the liver of diabetic rats. J Biol Chem 1996; 271:9871–9874.

    PubMed  CAS  Google Scholar 

  70. Argaud D, Zhang Q, Pan W et al. Regulation of rat liver glucose-6-phosphatase gene expression in different nutritional and hormonal states: Gene structure and 5’-flanking sequence. Diabetes 1996; 45:1563–71.

    PubMed  CAS  Google Scholar 

  71. Mithieux G, Vidal H, Zitoun C et al. Glucose-6-phosphatase mRNA and activity are increased to the same extent in kidney and liver of diabetic rats. Diabetes 1996; 45:891–896.

    PubMed  Google Scholar 

  72. Argaud D, Kirby TL, Newgard CB et al. Glucose stimulation of glucose-6-phosphatase gene expression in primary hepatocytes and Fao hepatoma cells. Requirement for glucokinase expression. J Biol Chem 1997; 272:12854–12861.

    PubMed  CAS  Google Scholar 

  73. ’Brien RM, Streeper RS, Ayala JE et al. Insulin-regulated gene expression. Biochem Soc Trans 2001; 29:552–8.

    Google Scholar 

  74. Trinh KY, O’Doherty RM, Anderson P et al. Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats. J Biol Chem 1998; 273:31615–31620.

    PubMed  CAS  Google Scholar 

  75. Wu Z, Puigserver P, Andersson U et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98:115–24.

    PubMed  CAS  Google Scholar 

  76. Yoon JC, Puigserver P, Chen G et al. Control of hepatic gluconeogenesis through the transcriptional activator PGC-1. Nature 2001; 413:131–8.

    PubMed  CAS  Google Scholar 

  77. Ouigserver P, Rhee J, Donovan J et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-lalpha interaction. Nature 2003; 423:550–5.

    Google Scholar 

  78. Valera A, Pujol A, Pelegrin M et al. Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop noninsulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 1994; 91:9151–4.

    PubMed  CAS  Google Scholar 

  79. She P, Shiota M, Shelton KD et al. Phosphoenolpyruvate carboxykinase is necessary for integration of hepatic energy metabolism. Mol Cell Biol 2000; 20:6508–17.

    PubMed  CAS  Google Scholar 

  80. She P, Burgess SC, Shiota M et al. Mechanisms by which liver-specific PEPCK knockout mice preserve euglycemia during starvation. Diabetes 2003; 52:1649–54.

    PubMed  CAS  Google Scholar 

  81. Seoane J, Trinh K, O’Doherty RM et al. Metabolic impact of adenovirus-mediated overexpression of the glucose-6-phosphatase catalytic subunit in primary hepatocytes. J Biol Chem 1997; 272:26972–26977.

    PubMed  CAS  Google Scholar 

  82. An J, Li Y, van De Werve G et al. Overexpression of the P46 (T1) translocase component of the glucose-6-phosphatase complex in hepatocytes impairs glycogen accumulation via hydrolysis of glucose 1-phosphate. J Biol Chem 2001; 276:10722–10779.

    PubMed  CAS  Google Scholar 

  83. Sutherland EW, Robinson GA. The role of cyclic AMP in the control of carbohydrate metabolism. Diabetes 1969; 18:797–819.

    PubMed  CAS  Google Scholar 

  84. Newgard CB, Hwang PK, Fletterick RJ. The family of glycogen phosphorylases: Structure and function. CRC critical reviews in biochemistry and molecular biology 1989; 24:69–99.

    PubMed  CAS  Google Scholar 

  85. Lawrence Jr JC, Roach PJ. New insights into the role and mechanism of glycogen synthase activation by insulin. Diabetes 1997; 46:541–7.

    PubMed  CAS  Google Scholar 

  86. McGarry JD, Kuwajima M, Newgard CB et al. From dietary glucose to liver glycogen—The full circle round. Annual Review of Nutrition 1986; 7:51–73.

    Google Scholar 

  87. Ferrer JC, Favre C, Gomis RR et al. Control of glycogen deposition. FEBS Lett 2003; 546:127–32.

    PubMed  CAS  Google Scholar 

  88. Frame S, Cohen P. GSK3 takes centre stage more than 20 years after its discovery. Biochem J 2001; 359:1–16.

    PubMed  CAS  Google Scholar 

  89. Newgard CB, Brady MJ, O’Doherty RM et al. Organizing glucose disposal: Emerging roles of the glycogen targeting subunits of protein phosphatase-1. Diabetes 2000; 49:1967–1977.

    PubMed  CAS  Google Scholar 

  90. Tang PM, Bondor JA, Swiderek KM et al. Molecular cloning and expression of the regulatory (RG1) subunit of the glycogen-associated protein phosphatase. J Biol Chem 1991; 266:15782–15789.

    PubMed  CAS  Google Scholar 

  91. Chen YH, Hansen L, Chen MX et al. Sequence of the human glycogen-associated regulatory subunit of type 1 protein phosphatase and analysis of its coding region and mRNA level in muscle from patients with NIDDM. Diabetes 1994; 43:1234–1241.

    PubMed  CAS  Google Scholar 

  92. Doherty MJ, Moorhead G, Morrice N et al. Amino acid sequence and expression of the hepatic glycogen-binding (GL)-subunit of protein phosphatase-1. FEBS Lett 1995; 375:294–298.

    PubMed  CAS  Google Scholar 

  93. Printen JA, Brady MJ, Saltiel AR. PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science 1997; 275:1475–1478.

    PubMed  CAS  Google Scholar 

  94. Doherty MJ, Young PR, Cohen PT. Amino acid sequence of a novel protein phosphatase 1 binding protein (R5) which is related to the liver-and muscle-specific glycogen binding subunits of protein phosphatase 1. FEBS Lett 1996; 399:339–343.

    PubMed  CAS  Google Scholar 

  95. Armstrong CG, Browne GJ, Cohen P et al. PPP1R6, a novel member of the family of glycogen-targetting subunits of protein phosphatase 1. FEBS Lett 1997; 418:210–214.

    PubMed  CAS  Google Scholar 

  96. Berman HK, O’Doherty RM, Anderson P et al. Overexpression of protein targeting to glycogen (PTG) in rat hepatocytes causes profound activation of glycogen synthesis independent of normal hormone-and substrate-mediated regulatory mechanisms. J Biol Chem 1998; 273:26421–26425.

    PubMed  CAS  Google Scholar 

  97. Gasa R, Jensen P-B, Berman H et al. Differential regulatory and metabolic properties of glycogen targeting subunits (PTG, GL, GM) expressed in hepatocytes. J Biol Chem 2000; 275:26396–26403.

    PubMed  CAS  Google Scholar 

  98. Gasa R, Clark C, Yang R et al. Reversal of diet-induced glucose intolerance by hepatic expression of a variant glycogen-targeting subunit of protein phosphatase-1. J Biol Chem 2002; 277:1524–1530.

    PubMed  CAS  Google Scholar 

  99. O’Doherty RM, Jensen PB, Anderson P et al. Activation of direct and indirect pathways of glycogen synthesis by hepatic overexpression of protein targeting to glycogen. J Clin Invest 2000; 105:479–488.

    Google Scholar 

  100. Yang R, Newgard CB. Hepatic expression of a targeting subunit of protein phosphatase-1 in streptozotocin-diabetic rats reverses hyperglycemia and hyperphagia despite depressed glucokinase expression. J Biol Chem 2003; 278:23418–23425.

    PubMed  CAS  Google Scholar 

  101. Martin WH, Hoover DJ, Armento SJ et al. Discovery of a human liver glycogen phosphorylase inhibitor that lowers blood glucose in vivo. Proc Natl Acad Sci USA 1998; 95:1776–1781.

    PubMed  CAS  Google Scholar 

  102. Treadway JL, Mendys P, Hoover DJ. Glycogen phosphorylase inhibitors for treatment of type 2 diabetes mellitus. Expert Opin Investig Drugs 2001; 10:439–354.

    PubMed  CAS  Google Scholar 

  103. Coghlan MP, Culbert AA, Cross DA et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol 2000; 7:793–803.

    PubMed  CAS  Google Scholar 

  104. Cline GW, Johnson K, Regittnig W et al. Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats. Diabetes 2002; 51:2903–2910.

    PubMed  CAS  Google Scholar 

  105. Abel ED, Peroni O, Kim JK et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001; 409:729–733.

    PubMed  CAS  Google Scholar 

  106. An J, Muoio DM, Shiota M et al. Hepatic expression of malonyl CoA decarboxylase reverses muscle, liver, and whole animal insulin resistance. Nat Med 2004; 10(3):268–274.

    PubMed  CAS  Google Scholar 

  107. Ntambi JM, Miyazaki M, Dobrzyn A. Regulation of stearoyl-CoA desaturase expression. Lipids 2004; 29:1061–1065.

    Google Scholar 

  108. Kim JK, Fillmore JJ, Chen Y et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci USA 2001; 98:7522–7527.

    PubMed  CAS  Google Scholar 

  109. Moore MC, Rossetti L, Pagliassotti MJ et al. Neural and pancreatic influences on net hepatic glucose uptake and glycogen synthesis. Am J Physiol 1996; 271:E215–E222.

    PubMed  CAS  Google Scholar 

  110. Burcelin R, Crivelli V, Perrin C et al. GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor-stimulated muscle glucose utilization. J Clin Invest 2003; 111:1555–1562.

    PubMed  CAS  Google Scholar 

  111. Burcelin R, Dolci W, Thorens B. Glucose sensing by the hepatoportal sensor is GLUT2-dependent. In vivo analysis of GLUT2-null mice. Diabetes 2000; 49:1643–1648.

    PubMed  CAS  Google Scholar 

  112. Lam TKT, Pocai A, Gutierrez-Juarez R et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nature Medicine 2005; (online ahead of print).

    Google Scholar 

  113. Boden G, Chen X, Capulong E et al. Effects of free fatty acids on gluconeogenesis and autoregulation of glucose production in type 2 diabetes. Diabetes 2001; 50:810–816.

    PubMed  CAS  Google Scholar 

  114. Newgard CB. Regulation of glucose metabolism in the liver. In: DeFronzo RA, Ferrannini E, Keen H et al. International Textbook of Diabetes. 3rd ed. John Wiley and Sons, 2004:253–276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Clark, C., Newgard, C.B. (2007). Hepatic Regulation of Fuel Metabolism. In: Mechanisms of Insulin Action. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72204-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72204-7_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-72203-0

  • Online ISBN: 978-0-387-72204-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics