The Experts Speak for Themselves

  • Peter Borwein
  • Stephen Choi
  • Brendan Rooney
  • Andrea Weirathmueller
Part of the CMS Books in Mathematics book series (CMSBM)


This chapter contains several original papers. These give the most essential sampling of the enormous body of material on the Riemann zeta function, the Riemann hypothesis, and related theory. They give a chronology of milestones in the development of the theory contained in the previous chapters. We begin with Chebyshev’s groundbreaking work on π(x), continue through Riemann’s proposition of the Riemann hypothesis, and end with an ingenious algorithm for primality testing. These papers place the material in historical context and illustrate the motivations for research on and around the Riemann hypothesis. Most papers are preceded by a short biographical note on the author(s) and all are preceded by a short review of the material they present.


Time Complexity Prime Number Zeta Function Maximal Subgroup Riemann Zeta Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [AH]
    L. M. Adleman and M.-D. Huang, Primality Testing and Abelian Varieties over Finite Fields, Lecture Notes in Math. 1512, Springer-Verlag, New York, 1992.Google Scholar
  2. [APR]
    L. M. Adleman, C. Pomerance, and R. S. Rumely, On distinguishing prime numbers from composite numbers, Ann. of Math. 117 (1983), 173–206.MATHMathSciNetCrossRefGoogle Scholar
  3. [AB]
    M. Agrawal and S. Biswas, Primality and identity testing via Chinese remaindering, Journal of the ACM 50 (2003), 429–443.MathSciNetCrossRefGoogle Scholar
  4. [AKS]
    M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, preprint (, August 2002.
  5. [Apo]
    T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1997.Google Scholar
  6. [Atk]
    A. O. L. Atkin, Lecture notes of a conference, Boulder (Colorado), Manuscript, August 1986.Google Scholar
  7. [BH]
    R. C. Baker and G. Harman, The Brun-Titchmarsh Theorem on average, in Analytic Number Theory, VolumeI (Allerton Park, IL, 1995), Progr. Math. 138, 39–103, Birkhäuser Boston, Boston, MA, 1996.Google Scholar
  8. [BP]
    R. Bhattacharjee and P. Pandey, Primality testing, Technical report, IIT Kanpur, 2001; available at
  9. [Car]
    R. D. Carmichael, Note on a number theory function, Bull. Amer. Math. Soc. 16 (1910), 232–238.MATHMathSciNetCrossRefGoogle Scholar
  10. [Fou]
    E. Fouvry, Théorème de Brun-Titchmarsh; application au théorème de Fermat, Invent. Math. 79 (1985), 383–407.MATHMathSciNetCrossRefGoogle Scholar
  11. [GK]
    S. Goldwasser and J. Kilian, Almost all primes can be quickly certified, in Proc. Annual ACM Symposium on the Theory of Computing, 316–329, 1986.Google Scholar
  12. [GM]
    R. Gupta and M. Ram Murty, A remark on Artin’s conjecture, Invent. Math. 78 (1984), 127–130.MATHMathSciNetCrossRefGoogle Scholar
  13. [GMM]
    R. Gupta, V. Kumar Murty, and M. Ram Murty, The Euclidian algorithm for S-integers, Number Theory(Montreal, Que., 1985), CMS Conf. Proc. 7 (1987), 189–202.Google Scholar
  14. [Gol]
    M. Goldfeld, On the number of primes pfor which p+ahas a large prime factor, Mathematika 16 (1969), 23–27.MATHMathSciNetCrossRefGoogle Scholar
  15. [HB]
    D. R. Heath-Brown, Artin’s conjecture for primitive roots, Quart. J. Math. Oxford 37 (1986), 27–38.MATHMathSciNetCrossRefGoogle Scholar
  16. [KS]
    N. Kayal and N. Saxena, Towards a deterministic polynomial-time test, Technical report, IIT Kanpur, 2002; available at
  17. [KSS]
    A. Kalai, A. Sahai, and M. Sudan, Notes on primality test and analysis of AKS, Private communication, August 2002.Google Scholar
  18. [Lee]
    J. V. Leeuwen (ed.), Handbook of Theoretical Computer Science, Volume A, MIT Press, Cambridge, MA, 1990.Google Scholar
  19. [Len]
    H. W. Lenstra, Jr., Primality testing with cyclotomic rings, unpublished (see for an exposition of Lenstra’s argument), August 2002.
  20. [LN]
    R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge Univ. Press, Cambridge, 1986.MATHGoogle Scholar
  21. [LP1]
    H. W. Lenstra, Jr. and C. Pomerance, Primality testing with gaussian periods, Private communication, March 2003.Google Scholar
  22. [LP2]
    H. W. Lenstra, Jr. and C. Pomerance, Remarks on Agrawal’s conjecture, unpublished ( primesinp/articles/html/50a/), March 2003.
  23. [Mac]
    M. Macaj, Some remarks and questions about the AKS algorithm and related conjecture, unpublished (, December 2002.
  24. [Mil]
    G. L. Miller, Riemann’s hypothesis and tests for primality, J. Comput. Sys. Sci. 13 (1976), 300–317.MATHCrossRefGoogle Scholar
  25. [Nai]
    M. Nair, On Chebyshev-type inequalities for primes, Amer. Math. Monthly 89 (1982), 126–129.MATHMathSciNetCrossRefGoogle Scholar
  26. [Pra]
    V. Pratt, Every prime has a succinct certificate, SIAM Journal on Computing 4 (1975), 214–220.MATHMathSciNetCrossRefGoogle Scholar
  27. [Rab]
    M. O. Rabin, Probabilistic algorithm for testing primality, J. Number Theory 12 (1980), 128–138.MATHMathSciNetCrossRefGoogle Scholar
  28. [SS]
    R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM Journal on Computing 6 (1977), 84–86.MATHMathSciNetCrossRefGoogle Scholar
  29. [vzGG]
    J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge Univ. Press, Cambridge, 1999.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Peter Borwein
    • 1
  • Stephen Choi
    • 1
  • Brendan Rooney
    • 2
  • Andrea Weirathmueller
    • 3
  1. 1.Department of Mathematics & StatisticsSimon Fraser UniversityBurnabyCanada
  2. 2.Simon Fraser UniversityBurnabyCanada
  3. 3.University of Western OntarioFrederictonCanada

Personalised recommendations