The Riemann Hypothesis pp 161-482 | Cite as

# The Experts Speak for Themselves

## Abstract

This chapter contains several original papers. These give the most essential sampling of the enormous body of material on the Riemann zeta function, the Riemann hypothesis, and related theory. They give a chronology of milestones in the development of the theory contained in the previous chapters. We begin with Chebyshev’s groundbreaking work on π(*x*), continue through Riemann’s proposition of the Riemann hypothesis, and end with an ingenious algorithm for primality testing. These papers place the material in historical context and illustrate the motivations for research on and around the Riemann hypothesis. Most papers are preceded by a short biographical note on the author(s) and all are preceded by a short review of the material they present.

## Keywords

Time Complexity Prime Number Zeta Function Maximal Subgroup Riemann Zeta Function## References

- [AH]L. M. Adleman and M.-D. Huang,
*Primality Testing and Abelian Varieties over Finite Fields*,*Lecture Notes in Math*.**1512**, Springer-Verlag, New York, 1992.Google Scholar - [APR]L. M. Adleman, C. Pomerance, and R. S. Rumely, On distinguishing prime numbers from composite numbers,
*Ann. of Math*.**117**(1983), 173–206.MATHMathSciNetCrossRefGoogle Scholar - [AB]M. Agrawal and S. Biswas, Primality and identity testing via Chinese remaindering,
*Journal of the ACM***50**(2003), 429–443.MathSciNetCrossRefGoogle Scholar - [AKS]M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, preprint (http://www.cse.iitk.ac.in/news/primality.ps), August 2002.
- [Apo]T. M. Apostol,
*Introduction to Analytic Number Theory*, Springer-Verlag, New York, 1997.Google Scholar - [Atk]A. O. L. Atkin, Lecture notes of a conference, Boulder (Colorado), Manuscript, August 1986.Google Scholar
- [BH]R. C. Baker and G. Harman, The Brun-Titchmarsh Theorem on average, in
*Analytic Number Theory*,*Volume*I (Allerton Park, IL, 1995),*Progr. Math*.**138**, 39–103, Birkhäuser Boston, Boston, MA, 1996.Google Scholar - [BP]R. Bhattacharjee and P. Pandey, Primality testing, Technical report, IIT Kanpur, 2001; available at http://www.cse.iitk.ac.in/research/btp2001/primality.html.
- [Car]R. D. Carmichael, Note on a number theory function,
*Bull. Amer. Math. Soc*.**16**(1910), 232–238.MATHMathSciNetCrossRefGoogle Scholar - [Fou]E. Fouvry, Théorème de Brun-Titchmarsh; application au théorème de Fermat,
*Invent. Math*.**79**(1985), 383–407.MATHMathSciNetCrossRefGoogle Scholar - [GK]S. Goldwasser and J. Kilian, Almost all primes can be quickly certified, in
*Proc. Annual ACM Symposium on the Theory of Computing*, 316–329, 1986.Google Scholar - [GM]R. Gupta and M. Ram Murty, A remark on Artin’s conjecture,
*Invent. Math*.**78**(1984), 127–130.MATHMathSciNetCrossRefGoogle Scholar - [GMM]R. Gupta, V. Kumar Murty, and M. Ram Murty, The Euclidian algorithm for
*S*-integers,*Number Theory*(Montreal, Que., 1985),*CMS Conf. Proc*.**7**(1987), 189–202.Google Scholar - [Gol]M. Goldfeld, On the number of primes
*p*for which*p*+*a*has a large prime factor,*Mathematika***16**(1969), 23–27.MATHMathSciNetCrossRefGoogle Scholar - [HB]D. R. Heath-Brown, Artin’s conjecture for primitive roots,
*Quart. J. Math. Oxford***37**(1986), 27–38.MATHMathSciNetCrossRefGoogle Scholar - [KS]N. Kayal and N. Saxena, Towards a deterministic polynomial-time test, Technical report, IIT Kanpur, 2002; available at http://www.cse.iitk.ac.in/research/btp2002/primality.html.
- [KSS]A. Kalai, A. Sahai, and M. Sudan, Notes on primality test and analysis of AKS, Private communication, August 2002.Google Scholar
- [Lee]J. V. Leeuwen (ed.),
*Handbook of Theoretical Computer Science*,*Volume A*, MIT Press, Cambridge, MA, 1990.Google Scholar - [Len]H. W. Lenstra, Jr., Primality testing with cyclotomic rings, unpublished (see http://cr.yp.to/papers.html#aks for an exposition of Lenstra’s argument), August 2002.
- [LN]R. Lidl and H. Niederreiter,
*Introduction to Finite Fields and their Applications*, Cambridge Univ. Press, Cambridge, 1986.MATHGoogle Scholar - [LP1]H. W. Lenstra, Jr. and C. Pomerance, Primality testing with gaussian periods, Private communication, March 2003.Google Scholar
- [LP2]H. W. Lenstra, Jr. and C. Pomerance, Remarks on Agrawal’s conjecture, unpublished (http://www.aimath.org/WWN/ primesinp/articles/html/50a/), March 2003.
- [Mac]M. Macaj, Some remarks and questions about the AKS algorithm and related conjecture, unpublished (http://thales.doa.fmph.uniba.sk/macaj/aksremarks.pdf), December 2002.
- [Mil]G. L. Miller, Riemann’s hypothesis and tests for primality,
*J. Comput. Sys. Sci*.**13**(1976), 300–317.MATHCrossRefGoogle Scholar - [Nai]M. Nair, On Chebyshev-type inequalities for primes,
*Amer. Math. Monthly***89**(1982), 126–129.MATHMathSciNetCrossRefGoogle Scholar - [Pra]V. Pratt, Every prime has a succinct certificate,
*SIAM Journal on Computing***4**(1975), 214–220.MATHMathSciNetCrossRefGoogle Scholar - [Rab]M. O. Rabin, Probabilistic algorithm for testing primality,
*J. Number Theory***12**(1980), 128–138.MATHMathSciNetCrossRefGoogle Scholar - [SS]R. Solovay and V. Strassen, A fast Monte-Carlo test for primality,
*SIAM Journal on Computing***6**(1977), 84–86.MATHMathSciNetCrossRefGoogle Scholar - [vzGG]J. von zur Gathen and J. Gerhard,
*Modern Computer Algebra*, Cambridge Univ. Press, Cambridge, 1999.MATHGoogle Scholar