Skip to main content

The Experts Speak for Themselves

  • Chapter
  • 3434 Accesses

Part of the book series: CMS Books in Mathematics ((CMSBM))

Abstract

This chapter contains several original papers. These give the most essential sampling of the enormous body of material on the Riemann zeta function, the Riemann hypothesis, and related theory. They give a chronology of milestones in the development of the theory contained in the previous chapters. We begin with Chebyshev’s groundbreaking work on π(x), continue through Riemann’s proposition of the Riemann hypothesis, and end with an ingenious algorithm for primality testing. These papers place the material in historical context and illustrate the motivations for research on and around the Riemann hypothesis. Most papers are preceded by a short biographical note on the author(s) and all are preceded by a short review of the material they present.

To appreciate the living spirit rather than the dry bones of mathematics, it is necessary to inspect the work of a master at first hand. Textbooks and treatises are an unavoidable evil … The very crudities of the first attack on a significant problem by a master are more illuminating than all the pretty elegance of the standard texts which has been won at the cost of perhaps centuries of finicky polishing.

Eric Temple Bell

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. M. Adleman and M.-D. Huang, Primality Testing and Abelian Varieties over Finite Fields, Lecture Notes in Math. 1512, Springer-Verlag, New York, 1992.

    Google Scholar 

  2. L. M. Adleman, C. Pomerance, and R. S. Rumely, On distinguishing prime numbers from composite numbers, Ann. of Math. 117 (1983), 173–206.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Agrawal and S. Biswas, Primality and identity testing via Chinese remaindering, Journal of the ACM 50 (2003), 429–443.

    Article  MathSciNet  Google Scholar 

  4. M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, preprint (http://www.cse.iitk.ac.in/news/primality.ps), August 2002.

  5. T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1997.

    Google Scholar 

  6. A. O. L. Atkin, Lecture notes of a conference, Boulder (Colorado), Manuscript, August 1986.

    Google Scholar 

  7. R. C. Baker and G. Harman, The Brun-Titchmarsh Theorem on average, in Analytic Number Theory, VolumeI (Allerton Park, IL, 1995), Progr. Math. 138, 39–103, Birkhäuser Boston, Boston, MA, 1996.

    Google Scholar 

  8. R. Bhattacharjee and P. Pandey, Primality testing, Technical report, IIT Kanpur, 2001; available at http://www.cse.iitk.ac.in/research/btp2001/primality.html.

  9. R. D. Carmichael, Note on a number theory function, Bull. Amer. Math. Soc. 16 (1910), 232–238.

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Fouvry, Théorème de Brun-Titchmarsh; application au théorème de Fermat, Invent. Math. 79 (1985), 383–407.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Goldwasser and J. Kilian, Almost all primes can be quickly certified, in Proc. Annual ACM Symposium on the Theory of Computing, 316–329, 1986.

    Google Scholar 

  12. R. Gupta and M. Ram Murty, A remark on Artin’s conjecture, Invent. Math. 78 (1984), 127–130.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Gupta, V. Kumar Murty, and M. Ram Murty, The Euclidian algorithm for S-integers, Number Theory(Montreal, Que., 1985), CMS Conf. Proc. 7 (1987), 189–202.

    Google Scholar 

  14. M. Goldfeld, On the number of primes pfor which p+ahas a large prime factor, Mathematika 16 (1969), 23–27.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. R. Heath-Brown, Artin’s conjecture for primitive roots, Quart. J. Math. Oxford 37 (1986), 27–38.

    Article  MATH  MathSciNet  Google Scholar 

  16. N. Kayal and N. Saxena, Towards a deterministic polynomial-time test, Technical report, IIT Kanpur, 2002; available at http://www.cse.iitk.ac.in/research/btp2002/primality.html.

  17. A. Kalai, A. Sahai, and M. Sudan, Notes on primality test and analysis of AKS, Private communication, August 2002.

    Google Scholar 

  18. J. V. Leeuwen (ed.), Handbook of Theoretical Computer Science, Volume A, MIT Press, Cambridge, MA, 1990.

    Google Scholar 

  19. H. W. Lenstra, Jr., Primality testing with cyclotomic rings, unpublished (see http://cr.yp.to/papers.html#aks for an exposition of Lenstra’s argument), August 2002.

  20. R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge Univ. Press, Cambridge, 1986.

    MATH  Google Scholar 

  21. H. W. Lenstra, Jr. and C. Pomerance, Primality testing with gaussian periods, Private communication, March 2003.

    Google Scholar 

  22. H. W. Lenstra, Jr. and C. Pomerance, Remarks on Agrawal’s conjecture, unpublished (http://www.aimath.org/WWN/ primesinp/articles/html/50a/), March 2003.

  23. M. Macaj, Some remarks and questions about the AKS algorithm and related conjecture, unpublished (http://thales.doa.fmph.uniba.sk/macaj/aksremarks.pdf), December 2002.

  24. G. L. Miller, Riemann’s hypothesis and tests for primality, J. Comput. Sys. Sci. 13 (1976), 300–317.

    Article  MATH  Google Scholar 

  25. M. Nair, On Chebyshev-type inequalities for primes, Amer. Math. Monthly 89 (1982), 126–129.

    Article  MATH  MathSciNet  Google Scholar 

  26. V. Pratt, Every prime has a succinct certificate, SIAM Journal on Computing 4 (1975), 214–220.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. O. Rabin, Probabilistic algorithm for testing primality, J. Number Theory 12 (1980), 128–138.

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM Journal on Computing 6 (1977), 84–86.

    Article  MATH  MathSciNet  Google Scholar 

  29. J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge Univ. Press, Cambridge, 1999.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Borwein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Borwein, P., Choi, S., Rooney, B., Weirathmueller, A. (2008). The Experts Speak for Themselves. In: Borwein, P., Choi, S., Rooney, B., Weirathmueller, A. (eds) The Riemann Hypothesis. CMS Books in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72126-2_12

Download citation

Publish with us

Policies and ethics