Advertisement

Expert Witnesses

  • Peter Borwein
  • Stephen Choi
  • Brendan Rooney
  • Andrea Weirathmueller
Part of the CMS Books in Mathematics book series (CMSBM)

Abstract

This chapter contains four expository papers on the Riemann hypothesis. These are our “expert witnesses”, and they provide the perspective of specialists in the fields of number theory and complex analysis. The first two papers were commissioned by the Clay Mathematics Institute to serve as official prize descriptions. They give a thorough description of the problem, the surrounding theory, and probable avenues of attack. In the third paper, Conrey gives an account of recent approaches to the Riemann hypothesis, highlighting the connection to random matrix theory. The last paper outlines reasons why mathematicians should remain skeptical of the hypothesis, and possible sources of disproof.

Keywords

Zeta Function Dirichlet Series Critical Line Riemann Zeta Function Random Matrix Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.J. Anderson and H.M. Stark, Oscillation theorems, in LNM’s 899, Springer-Verlag, Berlin-Heidelberg-New York, 1981, 79-106.Google Scholar
  2. [2]
    F.V. Atkinson, The mean value of the Riemann zeta-function, Acta Math. 81(1949), 353-376.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    R. Balasubramanian, On the frequency of Titchmarsh’s phenomenon for ζ(s) IV, Hardy-Ramanujan J. 9(1986), 1-10.MATHMathSciNetGoogle Scholar
  4. [4]
    R. Balasubramanian and K. Ramachandra, On the frequency of Titchmarsh’s phenomenon for ζ(s) III, Proc. Indian Acad. Sci. Section A 86(1977), 341-351.MATHMathSciNetGoogle Scholar
  5. [5]
    E. Bombieri and D. Hejhal, Sur les zéros des fonctions zeta d’Epstein, Comptes Rendus Acad. Sci.Paris 304(1987), 213-217.MATHMathSciNetGoogle Scholar
  6. [6]
    H. Davenport and H. Heilbronn, On the zeros of certain Dirichlet series I,II, J. London Math. Soc. 11(1936), 181-185 and ibid. 307-312.CrossRefGoogle Scholar
  7. [7]
    H.M. Edwards, Riemann’s zeta-function, Academic Press, New York-London, 1974.MATHGoogle Scholar
  8. [8]
    A. Fujii, On the distribution of the zeros of the Riemann zeta-function in short intervals, Bull. Amer. Math. Soc. 81(1975), 139-142.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    I.M. Gel’fand and G.E. Shilov, Generalized functions (vol. 2), Academic Press, New York-London, 1968.MATHGoogle Scholar
  10. [10]
    A.O. Gel’fond, The calculus of finite differences (Russian), Nauka, Moscow, 1967.Google Scholar
  11. [11]
    J.L. Hafner and A. Ivić, On the mean square of the Riemann zeta-function on the critical line, J. Number Theory 32(1989), 151-191.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    J.L. Hafner and A. Ivić, On some mean value results for the Riemann zeta-function, in Proc. International Number Theory Conf. Québec 1987, Walter de Gruyter and Co., Berlin-New York, 348-358.Google Scholar
  13. [13]
    M.N. Huxley, Exponential sums and the Riemann zeta-function IV, Proceedings London Math. Soc. (3)66(1993), 1-40.Google Scholar
  14. [14]
    M.N. Huxley, A note on exponential sums with a difference, Bulletin London Math. Soc. 29(1994), 325-327.MathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Ivić, Large values of the error term in the divisor problem, Invent. Math. 71(1983), 513-520.MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Ivić, The Riemann zeta-function, John Wiley and Sons, New York, 1985 (2nd ed. Dover, 2003).MATHGoogle Scholar
  17. [17]
    A. Ivić, On consecutive zeros of the Riemann zeta-function on the critical line, Séminaire de Théorie des Nombres, Université de Bordeaux 1986/87, Exposé no. 29, 14 pp.Google Scholar
  18. [18]
    A. Ivić, On a problem connected with zeros of ζ(s) on the critical line, Monatshefte Math. 104(1987), 17-27.MATHCrossRefGoogle Scholar
  19. [19]
    A. Ivić, Large values of certain number-theoretic error terms, Acta Arithmetica 56(1990), 135-159.MATHMathSciNetGoogle Scholar
  20. [20]
    A. Ivić, Mean values of the Riemann zeta-function, LN’s 82, Tata Institute of Fundamental Research, Bombay, 1991 (distr. by Springer Verlag, Berlin etc.).Google Scholar
  21. [21]
    A. Ivić, On a class of convolution functions connected with ζ(s), Bulletin CIX Acad. Serbe des Sciences et des Arts, Classe des Sciences mathématiques et naturelles, Math. No 20(1995), 29-50.Google Scholar
  22. [22]
    A. Ivić, On the fourth moment of the Riemann zeta-function, Publications Inst. Math. (Belgrade) 57(71)(1995), 101-110.Google Scholar
  23. [23]
    A. Ivić, On the distribution of zeros of a class of convolution functions, Bulletin CXI Acad. Serbe des Sciences et des Arts, Classe des Sciences mathématiques et naturelles, Sciences mathématiques No. 21(1996), 61-71.Google Scholar
  24. [24]
    A. Ivić, On the ternary additive divisor problem and the sixth moment of the zeta-function, in “Sieve Methods, Exponential Sums, and their Applications in Number Theory” (eds. G.R.H. Greaves, G. Harman, M.N. Huxley), Cambridge University Press (Cambridge, UK), 1996, 205-243.Google Scholar
  25. [25]
    A. Ivić and M. Jutila, Gaps between consecutive zeros of the Riemann zeta-function, Monatshefte Math. 105(1988), 59-73.MATHCrossRefGoogle Scholar
  26. [26]
    A. Ivić and Y. Motohashi, A note on the mean value of the zeta and L-functions VII, Proc. Japan Acad. Ser. A 66(1990), 150-152.MATHCrossRefGoogle Scholar
  27. [27]
    A. Ivić and Y. Motohashi, The mean square of the error term for the fourth moment of the zeta-function, Proc. London Math. Soc. (3)66(1994), 309-329.Google Scholar
  28. [28]
    A. Ivić and Y. Motohashi, The fourth moment of the Riemann zeta-function, Journal Number Theory 51(1995), 16-45.MATHCrossRefGoogle Scholar
  29. [29]
    A. Ivić and H.J.J. te Riele, On the zeros of the error term for the mean square of |ζ(½ + it)| , Math. Comp. 56 No 193(1991), 303-328.Google Scholar
  30. [30]
    M. Jutila, On the value distribution of the zeta-function on the critical line, Bull. London Math. Soc. 15(1983), 513-518.MATHMathSciNetCrossRefGoogle Scholar
  31. [31]
    A.A. Karatsuba, On the zeros of the Davenport-Heilbronn function lying on the critical line (Russian), Izv. Akad. Nauk SSSR ser. mat. 54 no. 2 (1990), 303-315.MATHGoogle Scholar
  32. [32]
    A.A. Karatsuba and S.M. Voronin, The Riemann zeta-function, Walter de Gruyter, Berlin–New York, 1992.MATHCrossRefGoogle Scholar
  33. [33]
    N.V. Kuznetsov, Sums of Kloosterman sums and the eighth moment of the Riemann zeta-function, Papers presented at the Ramanujan Colloquium, Bombay 1989, publ. for Tata Institute (Bombay) by Oxford University Press, Oxford, 1989, pp. 57-117.Google Scholar
  34. [34]
    A.A. Lavrik, Uniform approximations and zeros of derivatives of Hardy’s Z-function in short intervals (Russian), Analysis Mathem. 17(1991), 257-259.MATHMathSciNetCrossRefGoogle Scholar
  35. [35]
    D.H. Lehmer, On the roots of the Riemann zeta function, Acta Math. 95(1956), 291-298.MATHMathSciNetCrossRefGoogle Scholar
  36. [36]
    D.H. Lehmer, Extended computation of the Riemann zeta-function, Mathematika 3(1956), 102-108.MATHMathSciNetCrossRefGoogle Scholar
  37. [37]
    J.E. Littlewood, Sur la distribution des nombres premiers, Comptes rendus Académie Sci. (Paris) 158(1914), 1869-1872.MATHGoogle Scholar
  38. [38]
    J. van de Lune, H.J.J. te Riele and D.T. Winter, On the zeros of the Riemann zeta-function in the critical strip IV, Math. Comp. 46(1987), 273-308.Google Scholar
  39. [39]
    H.L. Montgomery, Extreme values of the Riemann zeta-function, Comment. Math. Helv. 52(1977), 511-518.MATHMathSciNetCrossRefGoogle Scholar
  40. [40]
    Y. Motohashi, The fourth power mean of the Riemann zeta-function, in ”Proceedings of the Amalfi Conference on Analytic Number Theory 1989”, eds. E. Bombieri et al., Università di Salerno, Salerno, 1992, 325-344.Google Scholar
  41. [41]
    Y. Motohashi, An explicit formula for the fourth power mean of the Riemann zeta-function, Acta Math. 170(1993), 181-220.MATHMathSciNetCrossRefGoogle Scholar
  42. [42]
    Y. Motohashi, A relation between the Riemann zeta-function and the hyperbolic Laplacian, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. IV ser. 22(1995), 299-313.MATHMathSciNetGoogle Scholar
  43. [43]
    Y. Motohashi, The Riemann zeta-function and the non-Euclidean Laplacian, Sugaku Expositions, AMS 8(1995), 59-87.MathSciNetGoogle Scholar
  44. [44]
    A.M. Odlyzko, On the distribution of spacings between the zeros of the zeta-function, Math. Comp. 48(1987), 273-308.MATHMathSciNetCrossRefGoogle Scholar
  45. [45]
    A.M. Odlyzko, Analytic computations in number theory, Proc. Symposia in Applied Math. 48(1994), 451-463.MathSciNetGoogle Scholar
  46. [46]
    A.M. Odlyzko, The 1020-th zero of the Riemann zeta-function and 175 million of its neighbors, to appear.Google Scholar
  47. [47]
    A.M. Odlyzko and H.J.J. te Riele, Disproof of the Mertens conjecture, J. reine angew. Math. 357(1985), 138-160.MATHMathSciNetGoogle Scholar
  48. [48]
    K. Ramachandra, Progress towards a conjecture on the mean value of Titchmarsh series, in ”Recent Progress in Analytic Number Theory”, symposium Durham 1979 (Vol. 1), Academic Press, London, 1981, 303-318.Google Scholar
  49. [49]
    K. Ramachandra, On the mean-value and omega-theorems for the Riemann zeta-function, LNs 85, Tata Institute of Fundamental Research, Bombay, 1995 (distr. by Springer Verlag, Berlin etc.).Google Scholar
  50. [50]
    H.J.J. te Riele, On the sign of the difference π(x) – li x, Math. Comp. 48(1987), 323-328.MATHMathSciNetGoogle Scholar
  51. [51]
    H.J.J. te Riele and J. van de Lune, Computational number theory at CWI in 1970-1994, CWI Quarterly 7(4) (1994), 285-335.MATHMathSciNetGoogle Scholar
  52. [52]
    B. Riemann, Über die Anzahl der Primzahlen unter einer gegebener Grösse, Monats. Preuss. Akad. Wiss. (1859-1860), 671-680.Google Scholar
  53. [53]
    A. Selberg, On the zeros of Riemann’s zeta-function, Skr. Norske Vid. Akad. Oslo 10(1942), 1-59.Google Scholar
  54. [54]
    A. Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid. 48(1946) No. 5, 89-155.MATHMathSciNetGoogle Scholar
  55. [55]
    A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric spaces with applications to Dirichlet series, J. Indian Math. Soc. 20(1956), 47-87.MATHMathSciNetGoogle Scholar
  56. [56]
    R. Sherman Lehman, On the difference π(x) – li x, Acta Arith, 11(1966), 397-410.MathSciNetGoogle Scholar
  57. [57]
    C.L. Siegel, Über Riemanns Nachlaβ zur analytischen Zahlentheorie, Quell. Stud. Gesch. Mat. Astr. Physik 2(1932), 45-80 (also in Gesammelte Abhandlungen, Band I, Springer Verlag, Berlin etc., 1966, 275-310).Google Scholar
  58. [58]
    R. Spira, Some zeros of the Titchmarsh counterexample, Math. Comp. 63(1994), 747-748.MATHMathSciNetCrossRefGoogle Scholar
  59. [59]
    K.-M. Tsang, Some Ω-theorems for the Riemann zeta-function, Acta Arith. 46(1986), 369-395.MATHMathSciNetGoogle Scholar
  60. [60]
    K.-M. Tsang, The large values of the Riemann zeta-function, Mathematika 40(1993), 203-214.MATHMathSciNetCrossRefGoogle Scholar
  61. [61]
    E.C. Titchmarsh, The theory of the Riemann zeta-function (2nd ed.), Clarendon Press, Oxford, 1986.MATHGoogle Scholar

References added in November 2003:

  1. [62]
    A. Ivić, On some results concerning the Riemann Hypothesis, in “Analytic Number Theory” (Kyoto, 1996) ed. Y. Motohashi, LMS LNS 247, Cambridge University Press, Cambridge, 1997, 139-167.Google Scholar
  2. [63]
    Y. Motohashi, Spectral theory of the Riemann zeta-function, Cambridge University Press, 1997.Google Scholar
  3. [64]
    A. Ivić, On the multiplicity of zeros of the zeta-function, Bulletin CXVIII de l’Académie Serbe des Sciences et des Arts - 1999, Classe des Sciences mathématiques et naturelles, Sciences mathématiques No. 24, 119-131.Google Scholar
  4. [65]
    E. Bombieri, Problems of the Millenium: the Riemann Hypothesis, http://www.ams.org/claymath/prize problems/riemann.pdf, Amer. Math. Soc., Providence, R.I., 2000, 12 pp.
  5. [66]
    J.B. Conrey, L-functions and random matrices, in “Mathematics Unlimited” (Part I), B. Engquist and W. Schmid eds., Springer, 2001, 331-352.Google Scholar
  6. [67]
    J.B. Conrey, D.W. Farmer, J.P. Keating, M.O. Rubinstein and N.C. Snaith, Integral moments of Lfunctions, 2003, 58 pp, arXiv:math.NT/0206018, http://front.math.ucdavis.edu/mat.NT/0206018.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Peter Borwein
    • 1
  • Stephen Choi
    • 1
  • Brendan Rooney
    • 2
  • Andrea Weirathmueller
    • 3
  1. 1.Department of Mathematics & StatisticsSimon Fraser UniversityBurnabyCanada
  2. 2.Simon Fraser UniversityBurnabyCanada
  3. 3.University of Western OntarioFrederictonCanada

Personalised recommendations