Advertisement

Relationship of the Lipopolysaccharide Structure of Yersinia bpestis to Resistance to Antimicrobial Factors

  • Yuriy A. Knirel
  • Nina A. Kocharova
  • Galina M. Titareva
  • Irina V. Bakhteeva
  • Sof'ya N. Senchenkova
  • Olga V. Bystrova
  • Svetlana V. Dentovskaya
  • Andrey P. Anisimov
  • Gerald B. Pier
  • Buko Lindner
  • Rima Z. Shaikhutdinova
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 603)

Disruption of lipopolysaccharide (LPS) biosynthesis genes in an epidemiologically significant Yersinia pestis strain showed that the ability to synthesize the full inner core of the LPS is crucial for resistances to the bactericidal action of antimicrobial peptides and to complement- mediated serum killing. Resistance to polymyxin B also requires a high content of the cationic sugar, 4-amino-4-deoxy-L-arabinose, in lipid A.

Keywords

Minimum Inhibitory Concentration Inner Core Normal Human Serum Yersinia Enterocolitica Yersinia Pestis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anisimov, A.P., Dentovskaya, S.V., Titareva, G.M., Bakhteeva, I.V., Shaikhutdinova, R.Z., Balakhonov, S.V., Lindner, B., Kocharova, N.A., Senchenkova, S.N., Holst, O., Pier, G.B., and Knirel, Y.A. (2005) Intraspecies and temperature-dependent variations in susceptibility of Yersinia pestis to bactericidal action of serum and polymyxin B. Infect. Immun. 73, 7324-7331.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anisimov, A.P., Lindler, L.E., and Pier, G.B. (2004) Intraspecific diversity of Yersinia pestis. Clin. Microbiol. Rev. 17, 434-464.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bengoechea, J.-A., Lindner, B., Seydel, U., Díaz, R., and Moriyón, I. (1998) Yersinia pseudotuberculosis and Yersinia pestis are more resistant to bactericidal cationic peptides than Yersinia enterocolitica. Microbiology 144, 1509-1515.CrossRefPubMedGoogle Scholar
  4. Brubaker, R.R. (1991) Factors promoting acute and chronic disease caused by yersiniae. Clin. Microbiol. Rev. 4, 309-324.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Butler, T. (1983) Plague and Other Yersinia Infections. Plenum Press, New York, NY.CrossRefGoogle Scholar
  6. Datsenko, K.A. and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640-6645.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dmitrovskii, V.G. (1994) Toxic component of pathogenesis of plague infectious process: infective toxic shock. In: V.M. Stepanov (Ed.), Prophylaxis and means of prevention of plague. Scientific-Manufacturing Association of the Plague-Control Establishments, Almaty, Kazakhstan, pp. 15-16.Google Scholar
  8. Domaradskii, I.V., Iaromiuk, G.A., Vasiukhina, L.V., and Korotaeva, A.V. (1963) On coagulation of blood plasma by plague and pseudotuberculosis microbes. Biull. Eksp. Biol. Med. 56, 79-82.PubMedGoogle Scholar
  9. Galanos, C., Lüderitz, O., and Westphal, O. (1969) A new method for the extraction of R lipopolysaccharides. Eur. J. Biochem. 9, 245-249.CrossRefPubMedGoogle Scholar
  10. Kawahara, K., Tsukano, H., Watanabe, H., Lindner, B., and Matsuura, M. (2002) Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect. Immun. 70, 4092-4098.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Knirel, Y.A., Lindner, B., Vinogradov, E.V., Kocharova, N.A., Senchenkova, S.N., Shaikhutdinova, R.Z., Dentovskaya, S.V., Fursova, N.K., Bakhteeva, I.V., Titareva, G.M., Balakhonov, S.V., Holst, O., Gremyakova, T.A., Pier, G.B., and Anisimov, A.P. (2005) Temperature-dependent variations and intraspecies diversity of the structure of the lipopolysaccharide of Yersinia pestis. Biochemistry 45, 1731-1743.CrossRefGoogle Scholar
  12. Kukkonen, M., Suomalainen, M., Kyllönen, P., Lähteenmäki, K., Lång, H., Virkola, R., Helander, I.M., Holst, O., and Korhonen, T.K. (2004) Lack of O-antigen is essential for plasminogen activation by Yersinia pestis and Salmonella enterica. Mol. Microbiol. 51, 215-225.CrossRefPubMedGoogle Scholar
  13. Porat, R., McCabe, W.R., and Brubaker, R.R. (1995) Lipopolysaccharide-associated resistance to killing of yersiniae by complement. J. Endotoxin Res. 2, 91-97.CrossRefGoogle Scholar
  14. Rebeil, R., Ernst, R.K., Gowen, B.B., Miller, S.I., and Hinnebusch, B.J. (2004) Variation in lipid A structure in the pathogenic yersiniae. Mol. Microbiol. 52, 1363-1373.CrossRefPubMedGoogle Scholar
  15. Skurnik, M., Peippo, A., and Ervelä, E. (2000) Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y-pseudotuberculosis serotype O:1b. Mol. Microbiol. 37, 316-330.CrossRefPubMedGoogle Scholar
  16. Sodeinde, O.A. and Goguen, J.D. (1988) Genetic analysis of the 9.5-kilobase virulence plasmid of Yersinia pestis. Infect. Immun. 56, 2743-2748.PubMedPubMedCentralGoogle Scholar
  17. Sodeinde, O.A. and Goguen, J.D. (1989) Nucleotide sequence of the plasminogen activator gene of Yersinia pestis: relationship to ompT of Escherichia coli and gene E of Salmonella typhimurium. Infect. Immun. 57, 1517-1523.PubMedPubMedCentralGoogle Scholar
  18. Sodeinde, O.A., Subrahmanyam, Y.V.B.K., Stark, K., Quan, T., Bao, Y., and Goguen, J.D. (1992) A surface protease and the invasive character of plague. Science 258, 1004-1007.CrossRefPubMedGoogle Scholar
  19. Straley, S.C. (1993) Adhesins in Yersinia pestis. Trends Microbiol. 1, 285-286.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yuriy A. Knirel
    • 1
  • Nina A. Kocharova
    • 1
  • Galina M. Titareva
    • 2
  • Irina V. Bakhteeva
    • 2
  • Sof'ya N. Senchenkova
    • 1
  • Olga V. Bystrova
    • 1
  • Svetlana V. Dentovskaya
    • 2
  • Andrey P. Anisimov
    • 2
  • Gerald B. Pier
    • 3
  • Buko Lindner
    • 4
  • Rima Z. Shaikhutdinova
    • 2
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesRussia
  2. 2.State Research Center for Applied Microbiology and BiotechnologyObolenskRussia
  3. 3.Channing Laboratory, Brigham and Women's HospitalHarvard Medical SchoolBostonUSA
  4. 4.Research Center BorstelCenter for Medicine and BiosciencesGermany

Personalised recommendations