Advertisement

Variability of the Protein Sequences of LcrV Between Epidemic and Atypical Rhamnose-Positive Strains of Yersinia pestis

  • Andrey P. Anisimov
  • Svetlana V. Dentovskaya
  • Tat'yana E. Svetoch
  • Evgeniy A. Panfertsev
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 603)

Sequencing of lcrV genes and comparison of the deduced amino acid sequences from ten Y. pestis strains belonging mostly to the group of atypical rhamnose-positive isolates (non-pestis subspecies or pestoides group) showed that the LcrV proteins analyzed could be classified into five sequence types. This classification was based on major amino acid polymorphisms among LcrV proteins in the four “hot points” of the protein sequences. Some additional minor polymorphisms were found throughout these sequence types. The “hot points” corresponded to amino acids 18 (Lys → Asn), 72 (Lys → Arg), 273 (Cys → Ser), and 324-326 (Ser-Gly-Lys → Arg) in the LcrV sequence of the reference Y. pestis strain CO92. One possible explanation for polymorphism in amino acid sequences of LcrV among different strains is that strain-specific variation resulted from adaptation of the plague pathogen to different rodent and lagomorph hosts.

Keywords

Sequence Type Yersinia Enterocolitica Yersinia Pestis Epidemic Strain Pestis Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair, D.M., Worsham, P.L., Hill, K.K., Klevytska, A.M., Jackson, P.J., Friedlander, A.M., and Keim, P. (2000) Diversity in a variable-number tandem repeat from Yersinia pestis. J. Clin. Microbiol. 38, 1516-1519.PubMedPubMedCentralGoogle Scholar
  2. Anisimov, A.P., Lindler, L.E. and Pier, G.B. (2004) Intraspecific diversity of Yersinia pestis. Clin. Microbiol. Rev. 17, 434-464.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bergman, T., Hakansson, S., Forsberg, A., Norlander, L., Macellaro, A., Backman, A., Bolin, I., and Wolf-Watz, H. (1991) Analysis of the V antigen lcrGVH-yopBD operon of Yersinia pseudotuberculosis: evidence for a regulatory role of LcrH and LcrV. J. Bacteriol. 173 (5), 1607-1616.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brubaker, R.R. (2003) Interleukin-10 and inhibition of innate immunity to yersiniae: roles of Yops and LcrV (V antigen). Infect. Immun. 71, 3673-3681.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Hakansson, S., Bergman, T., Vanooteghem, J.C., Cornelis, G., and Wolf-Watz, H. (1993) YopB and YopD constitute a novel class of Yersinia Yop proteins. Infect. Immun. 61, 71-80.PubMedPubMedCentralGoogle Scholar
  6. Motin, V.L., Nakajima, R., Smirnov, G.B., and Brubaker, R.R. (1994) Passive immunity to yersiniae mediated by anti-recombinant V antigen and protein A-V antigen fusion peptide. Infect. Immun. 62, 4192-4201.PubMedPubMedCentralGoogle Scholar
  7. Motin, V.L., Pokrovskaya, M.S., Telepnev, M.V., Kutyrev, V.V., Vidyaeva, N.A., Filippov, A.A., and Smirnov, G.B. (1992) The difference in the lcrV sequences between Y. pestis and Y. pseudotuberculosis and its application for characterization of Y. pseudotuberculosis strains. Microb. Pathog. 12, 165-175.CrossRefPubMedGoogle Scholar
  8. Price, S.B., Leung, K.Y., Barveand, S.S., and Straley, S.C. (1989) Molecular analysis of lcrGVH, the V antigen operon of Yersinia pestis. J. Bacteriol. 171, 5646-5653.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Roggenkamp, A., Geiger, A.M., Leitritz, L., Kessler, A., and Heesemann, J. (1997) Passive immunity to infection with Yersinia spp. mediated by anti-recombinant V antigen is dependent on polymorphism of V antigen. Infect. Immun. 65, 446-451.PubMedPubMedCentralGoogle Scholar
  10. Sing, A., Reithmeier-Rost, D., Granfors, K., Hill, J., Roggenkamp, A., and Heesemann, J. (2005) A hypervariable N-terminal region of Yersinia LcrV determines Toll-like receptor 2-mediated IL-10 induction and mouse virulence. Proc. Natl. Acad. Sci. USA. 102, 16049-16054.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Snellings, N.J., Popek, M., and Lindler, L.E. (2001) Complete DNA sequence of Yersinia enterocolitica serotype O:8 low-calcium-response plasmid reveals a new virulence plas-mid-associated replicon. Infect. Immun. 69, 4627-4638.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Song, Y., Tong, Z., Wang, J., Wang, L., Guo, Z., Han, Y., Zhang, J., Pei, D., Zhou, D., Qin, H., Pang, X., Han, Y., Zhai, J., Li, M., Cui, B., Qi, Z., Jin, L., Dai, R., Chen, F., Li, S., Ye, C., Du, Z., Lin, W., Wang, J., Yu, J., Yang, H., Wang, J., Huang, P., and Yang, R. (2004) Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. DNA Res. 11, 179-197.CrossRefPubMedGoogle Scholar
  13. Titball, R.W. and Williamson, E.D. (2004) Yersinia pestis (plague) vaccines. Expert. Opin. Biol. Ther. 4, 965-973.CrossRefPubMedGoogle Scholar
  14. Une, T. and Brubaker, R.R. (1984) Roles of V antigen in promoting virulence and immunity in yersiniae. J. Immunol. 133, 2226-2230.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Andrey P. Anisimov
    • 1
  • Svetlana V. Dentovskaya
    • 1
  • Tat'yana E. Svetoch
    • 1
  • Evgeniy A. Panfertsev
    • 1
  1. 1.Laboratory for Plague Microbiology, Department of Infectious DiseasesState Research Center for Applied Microbiology and BiotechnologyObolenskRussia

Personalised recommendations