Regulation of Biofilm Formation in Yersinia pestis

  • Alexander G. Bobrov
  • Olga Kirillina
  • Robert D. Perry
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 603)

Plague biofilm development is controlled by positive (HmsT) and negative (HmsP) regulators. The GGDEF-domain protein HmsT appears to have diguanylate cyclase activity to synthesize bis-(3’-5’)-cyclic dimeric guanosine monophosphate (c-di-GMP) from 2 GTP molecules. The EAL domain of HmsP has phosphodiesterase activity and likely degrades c-di- GMP. This second messenger molecule probably influences biofilm development by activating the glycosyl transferase activity of HmsR. Here we demonstrate the in vitro pH optimum for phosphodiesterase activity of HmsP and that an alanine substitution in residue L508, D626, or E686 within the EAL domain affects this enzymatic activity and the biological function of the protein. Finally, protein-protein interactions and the cytoplasmic location of the enzymatic domains of HmsT and HmsP are evaluated.


Yersinia Pestis Phosphodiesterase Activity Crystal Violet Staining Alanine Substitution Acetobacter Xylinum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, D.G. and Sutherland, I.W. (1984) A staining technique for attached bacteria and its correlation to extracellular carbohydrate production. J. Microbiol. Methods 2, 93-99.CrossRefGoogle Scholar
  2. Bacot, A.W., and Martin, C.J. (1914) LXVII. Observations on the mechanism of the transmis-sion of plague by fleas. J. Hyg. 13, 423-439.PubMedPubMedCentralGoogle Scholar
  3. Bibikova, V.A., and Klassovskii, L.N. (1974) The Transmission of Plague by Fleas (in Rus-sian). Moscow: Meditsina.Google Scholar
  4. Bobrov, A.G., Kirillina, O. and Perry, R.D. (2005) The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol. Lett. 247, 123-130.Google Scholar
  5. Costerton, J.W., Lewandowski, Z., Cladwell, D.E., Korber, D.R. and Lappin-Scott, H.M. (1995) Microbial biofilms. Annu. Rev. Microbiol. 49, 711-745.CrossRefPubMedGoogle Scholar
  6. Darby, C., Hsu, J.W., Ghori, N. and Falkow, S. (2002). Caenorhabditis elegans: plague bacte-ria biofilm blocks food intake. Nature 417, 243-244.CrossRefPubMedGoogle Scholar
  7. Darby, C., Ananth, S.L., Tan, L., and Hinnebusch, B.J. (2005) Identification of gmhA, a Yersinia pestis gene required for flea blockage, using a Caenorhabditis elegans biofilm system. Infect. Immun. 73, 7236-7242.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Eisen, R.J., Bearden, S.W., Wilder, A.P., Montenieri, J.A., Antolin, M.F., and Gage, K.L. (2006) Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism ex-plaining rapidly spreading plague epizootics. Proc. Natl. Acad. Sci. USA 103, 15380-15385.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Forman, S., Bobrov, A.G., Kirillina, O., Craig, S.K., Abney, J., Fetherston J.D. and Perry, R.D. (2006) Identification of critical amino acid residues in the plague biofilm Hms proteins. Microbiology 152, 3399-3410.CrossRefPubMedGoogle Scholar
  10. Hare, J.M. and McDonough, K.A. (1999) High-frequency RecA-dependent and -independent mechanisms of Congo red binding mutations in Yersinia pestis. J. Bacteriol. 181, 4896-4904.PubMedPubMedCentralGoogle Scholar
  11. Hinnebusch, B.J., Perry, R.D. and Schwan, T.G. (1996) Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273, 367-370.CrossRefPubMedGoogle Scholar
  12. Itoh, Y., Wang, X., Hinnebusch, B.J., Preston, J.F., III and Romeo, T. (2005) Depolymeriza-tion of β-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J. Bacteriol. 187, 382-387.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Jackson, S. and Burrows, T.W. (1956) The pigmentation of Pasteurella pestis on a defined medium containing haemin. Br. J. Exp. Pathol. 37, 570-576.PubMedPubMedCentralGoogle Scholar
  14. Jarrett, C.O., Deak, E., Isherwood, K.E., Oyston, P.C., Fischer, E.R., Whitney, A.R., Kobaya-shi, S.D., DeLeo, F.R. and Hinnebusch, B.J. (2004) Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J. Infect. Dis. 190, 783-792.CrossRefPubMedGoogle Scholar
  15. Jones, H.A., Lillard, J.W., Jr. and Perry, R.D. (1999) HmsT, a protein essential for expression of the haemin storage (Hms+) phenotype of Yersinia pestis. Microbiology 145, 2117-2128.CrossRefPubMedGoogle Scholar
  16. Karimova, G., Pidoux, J., Ullmann, A. and Ladant D. (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. USA 95, 5752-5756.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kimura, S., Chen, H.P., Saxena, I.M., Brown, R.M., Jr. and Itoh, T. (2001) Localization of c-di-GMP-binding protein with the linear terminal complexes of Acetobacter xylinum. J. Bacteriol. 183, 5668-5674.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kirillina, O., Fetherston, J.D., Bobrov, A.G., Abney, J. and Perry, R.D. (2004) HmsP, a puta-tive phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol. Microbiol. 54, 75-88.CrossRefPubMedGoogle Scholar
  19. Kutyrev, V.V., Filippov, A.A., Oparina, O.S. and Protsenko, O.A. (1992) Analysis of Yersinia pestis chromosomal determinants Pgm+ and Psts associated with virulence. Microb. Pathog. 12, 177-186.CrossRefPubMedGoogle Scholar
  20. Lillard, J.W., Jr., Bearden, S.W., Fetherston, J.D., and Perry, R.D. (1999) The haemin storage (Hms+) phenotype of Yersinia pestis is not essential for the pathogenesis of bubonic plague in mammals. Microbiology 145, 197-209.CrossRefPubMedGoogle Scholar
  21. Mack, D., Fischer, W., Krokotsch, A., Leopold, K., Hartmann, R., Egge, H. and Laufs, R. (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epi-dermidis is a linear β-1,6-linked glucosaminoglycan: purification and structural analysis. J. Bacteriol. 178, 175-183.CrossRefPubMedPubMedCentralGoogle Scholar
  22. O’Toole, G.A., Pratt, L.A., Watnick, P.I., Newman, D.K., Weaver, V.B. and Kolter, R. (1999) Genetic approaches to study of biofilms. Meth. Enzymol. 310, 91-109.CrossRefPubMedGoogle Scholar
  23. Patel, C. N., Wortham, B.W., Lines, J.L., Fetherston, J.D., Perry, R.D. and Oliveira, M.A. (2006) Polyamines are essential for the formation of plague biofilm. J. Bacteriol. 188, 2355-2363.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Perry, R.D., Pendrak, M.L. and Schuetze, P. (1990) Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis. J. Bacteriol. 172, 5929-5937.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Perry, R.D., Bobrov, A.G., Kirillina, O., Jones, H.A., Pedersen, L.L., Abney, J. and Fetherston, J.D. (2004) Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J. Bacteriol. 186, 1638-1647.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Römling, U., Gomelsky, M. and Galperin, M.Y. (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol. Microbiol. 57, 629-639.CrossRefPubMedGoogle Scholar
  27. Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., Braun, S., de Vroom, E., van der Marel, G.A., van Boom, J.H. and Benziman, M. (1987) Regula-tion of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325, 279-281CrossRefPubMedGoogle Scholar
  28. Simm, R., Fetherston, J.D., Kader, A., Römling, U. and Perry, R.D. (2005) Phenotypic con-vergence mediated by GGDEF-domain-containing proteins. J. Bacteriol. 187, 6816-6823.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sutherland, I.W. (2001) The biofilm matrix - an immobilized but dynamic microbial environ-ment. Trends Microbiol. 9, 222-227.CrossRefPubMedGoogle Scholar
  30. Tan, L. and Darby, C. (2004) A movable surface: formation of Yersinia sp. biofilms on motile Caenorhabditis elegans. J. Bacteriol. 186, 5087-5092.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Tan, L. and Darby, C. (2006) Yersinia pestis YrbH is a multifunctional protein required for both 3-deoxy-D-manno-oct-2-ulosonic acid biosynthesis and biofilm formation. Mol. Microbiol. 61, 861-70.CrossRefPubMedGoogle Scholar
  32. Wang, X., Preston, J.F., III and Romeo, T. (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J. Bac-teriol. 186, 2724-2734.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Alexander G. Bobrov
    • 1
  • Olga Kirillina
    • 1
  • Robert D. Perry
    • 1
  1. 1.Department of Microbiology, Immunology and Molecular GeneticsUniversity of KentuckyLexingtonUSA

Personalised recommendations