Analysis of Yersinia pestis Gene Expression in the Flea Vector

  • Viveka Vadyvaloo
  • Florent Sebbane
  • B. Joseph Hinnebusch
  • Daniel Sturdevant
  • Clayton Jarrett
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 603)

Yersinia pestis is the causative agent of plague. Unlike the other pathogenic Yersinia species, Y. pestis has evolved an arthropod-borne route of transmission, alternately infecting flea and mammalian hosts. Distinct subsets of genes are hypothesized to be differentially expressed during infection of the arthropod vector and mammalian host. Genes crucial for mammalian infection are referred to as virulence factors whilst genes playing a role in the flea vector are termed transmission factors. This article serves as a review of known factors involved in flea-borne transmission and introduces an ‘in vivo’ microarray approach to elucidating the genetic basis of Y. pestis infection of- and transmission by the flea.


Blood Meal Yersinia Pestis Polyamine Transport Exogenous Polyamine Pigmentation Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacot, A.W. and Martin, C.J. (1914) Observations on the mechanism on the transmission of plague by fleas. J. Hyg. 13, 423-439.PubMedPubMedCentralGoogle Scholar
  2. Burroughs, A.L. (1947) Sylvatic plague studies. the vector efficiency of nine species of fleas compared with Xenopsylla cheopis. J. Hyg. 45, 371-396.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Burrows, T.W. and Jackson, S. (1956) The pigmentation of Pasteurella pestis on a defined medium containing haemin. Br. J. Exp. Pathol. 37, 570-576.PubMedPubMedCentralGoogle Scholar
  4. Christensen, G.D., Simpson, W.A., Younger, J.M., Baddour, L.M., Barrett, F.F., Melton, D.M. and Beachey, E.H. (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22, 996-1006.PubMedPubMedCentralGoogle Scholar
  5. Cooper, K.D., Shukla, J.B. and Rennert, O.M. (1978) Polyamine compartmentalization in various human disease states. Clin. Chim. Acta 82, 1-7.CrossRefPubMedGoogle Scholar
  6. Darby, C., Ananth, S.L., Tan, L. and Hinnebusch, B.J. (2005) Identification of gmhA, a Yersinia pestis gene required for flea blockage, by using a Caenorhabditis elegans biofilm system. Infect. Immun. 73, 7236-7242.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Darby, C., Hsu, J.W., Ghori, N. and Falkow, S. (2002) Caenorhabditis elegans: plague bacte-ria biofilm blocks food intake. Nature 417, 243-244.CrossRefPubMedGoogle Scholar
  8. Davey, M.E. and O’Toole, G.A. (2000) Microbial biofilms: from ecology to molecular genet-ics. Microbiol. Mol. Biol. Rev. 64, 847-867.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Erickson, D.L., Jarrett, C.O., Wren, B.W. and Hinnebusch, B.J. (2006) Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. J. Bacteriol. 188, 1113-1119.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hinnebusch, B.J., Fischer, E.R. and Schwan, T.G. (1998) Evaluation of the role of the Yersinia pestis plasminogen activator and other plasmid-encoded factors in temperature-dependent blockage of the flea. J. Infect. Dis. 178, 1406-1415.CrossRefPubMedGoogle Scholar
  11. Hinnebusch, B.J., Perry, R.D. and Schwan, T.G. (1996) Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273, 367-370.CrossRefPubMedGoogle Scholar
  12. Hinnebusch, B.J., Rudolph, A.E., Cherepanov, P., Dixon, J.E., Schwan, T.G. and Forsberg, A. (2002) Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733-735.CrossRefPubMedGoogle Scholar
  13. Igarashi, K. and Kashiwagi, K. (2000) Polyamines: mysterious modulators of cellular func-tions. Biochem. Biophys. Res. Commun. 271, 559-564.CrossRefPubMedGoogle Scholar
  14. Jarrett, C.O., Deak, E., Isherwood, K.E., Oyston, P.C., Fischer, E.R., Whitney, A.R., Kobaya-shi, S.D., DeLeo, F.R. and Hinnebusch, B.J. (2004) Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J. Infect. Dis. 190, 783-792.CrossRefPubMedGoogle Scholar
  15. Jones, H.A., Lillard, Jr., J.W. and Perry, R.D. (1999) HmsT, a protein essential for expression of the haemin storage (Hms+) phenotype of Yersinia pestis. Microbiology 145, 2117-2128.CrossRefPubMedGoogle Scholar
  16. Lu, C.D., Itoh, Y., Nakada, Y. and Jiang, Y. (2002) Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudo-monas aeruginosa PAO1. J. Bacteriol. 184, 3765-3773.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Moore, R.C. and Boyle, S.M. (1991) Cyclic AMP inhibits and putrescine represses expression of the speA gene encoding biosynthetic arginine decarboxylase in Escherichia coli. J. Bac-teriol. 173, 3615-3621.CrossRefGoogle Scholar
  18. Patel, C.N., Wortham, B.W., Lines, J.L., Fetherston, J.D., Perry, R.D. and Oliveira, M.A. (2006) Polyamines are essential for the formation of plague biofilm. J. Bacteriol. 188, 2355-2363.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Pendrak, M.L. and Perry, R.D. (1993) Proteins essential for expression of the Hms+ pheno-type of Yersinia pestis. Mol. Microbiol. 8, 857-864.CrossRefPubMedGoogle Scholar
  20. Perry, R.D., Pendrak, M.L. and Schuetze, P. (1990) Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis. J. Bacteriol. 172, 5929-5937.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Sebbane, F., Lemaitre, N., Sturdevant, D.E., Rebeil, R., Virtaneva, K., Porcella, S.F. and Hinnebusch, B.J. (2006) Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. Proc. Natl. Acad. Sci. USA 103, 11766-11771.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Sternberg, C., Christensen, B.B., Johansen, T., Toftgaard Nielsen, A., Andersen, J.B., Givskov, M. and Molin, S. (1999) Distribution of bacterial growth activity in flow-chamber biofilms. Appl. Environ. Microbiol. 65, 4108-4117.PubMedPubMedCentralGoogle Scholar
  23. Straley, S.C. and Bowmer, W.S. (1986) Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins. Infect. Immun. 51, 445-454.PubMedPubMedCentralGoogle Scholar
  24. Sturgill, G. and Rather, P.N. (2004) Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Mol. Microbiol. 51, 437-446.CrossRefPubMedGoogle Scholar
  25. Surgalla, M.J. and Beesley, E.D. (1969) Congo red-agar plating medium for detecting pig-mentation in Pasteurella pestis. Appl. Microbiol. 18, 834-837.PubMedPubMedCentralGoogle Scholar
  26. Tabor, C.W. and Tabor, H. (1985) Polyamines in microorganisms. Microbiol. Rev. 49, 81-99PubMedPubMedCentralGoogle Scholar
  27. Tkachenko, A., Nesterova, L. and Pshenichnov, M. (2001) The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli. Arch. Microbiol. 176, 155-157.CrossRefPubMedGoogle Scholar
  28. Wallace, H.M., Fraser, A.V. and Hughes, A. (2003) A perspective of polyamine metabolism. Biochem. J. 376, 1-14.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Werner, E., Roe, F., Bugnicourt, A., Franklin, M.J., Heydorn, A., Molin, S., Pitts, B. and Stewart, P.S. (2004) Stratified growth in Pseudomonas aeruginosa biofilms. Appl. Envi-ron. Microbiol. 70, 6188-6196.CrossRefGoogle Scholar
  30. Yoshida, M., Kashiwagi, K., Shigemasa, A., Taniguchi, S., Yamamoto, K., Makinoshima, H., Ishihama, A. and Igarashi, K. (2004) A unifying model for the role of polyamines in bac-terial cell growth, the polyamine modulon. J. Biol. Chem. 279, 46008-46013.CrossRefPubMedGoogle Scholar
  31. Yu, T., de la Rosa, C. and Lu, R. (2004) Microsensor measurement of oxygen concentration in biofilms: from one dimension to three dimensions. Water Sci. Technol. 49, 353-358.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Viveka Vadyvaloo
    • 1
  • Florent Sebbane
    • 2
  • B. Joseph Hinnebusch
    • 1
  • Daniel Sturdevant
    • 3
  • Clayton Jarrett
    • 1
  1. 1.Laboratory of Zoonotic PathogensNational Institutes of HealthHamiltonUSA
  2. 2.Institut Pasteur de LilleUniversité de Lille 2France
  3. 3.Research Technology Section, Rocky Mountain LaboratoriesNational Institutes of HealthHamiltonUSA

Personalised recommendations