Differential Gene Regulation in Yersinia pestis versus Yersinia pseudotuberculosis: Effects of Hypoxia and Potential Role of a Plasmid Regulator

  • Guangchun Bai
  • Janice Pata
  • Kathleen A. McDonough
  • Andrey Golubov
  • Eric Smith
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 603)

The molecular basis of the biological differences between Yersinia pestis and Yersinia pseudotuberculosis remains largely unknown, and relatively little is known about environmental regulation of gene expression in these bacteria. We used a proteomic approach to explore the regulatory response of each bacterium to carbon dioxide-supplemented hypoxic conditions. Both organisms responded similarly and the magnitude of their responses was similar to what was observed in low iron conditions. We also identified proteins that were expressed at different levels in Y. pestis and Y. pseudotuberculosis, and found that SodB is expressed more strongly at both the protein and RNA levels in Y. pseudotuberculosis than in Y. pestis. Enzyme activity did not directly correlate with levels of protein expression, and we propose that an amino acid change difference between these orthologous proteins has the potential to affect catalytic activity. In addition, the upstream regulatory regions of several chromosomal genes were found to exhibit specific binding with a putative transcription factor, CDS4, from the Y. pestis-specific pPCP1 plasmid. The potential role of this protein in modulating Y. pestis- specific gene regulation warrants further investigation.


Yersinia Enterocolitica Yersinia Pestis Upstream Regulatory Region Brucella Abortus Mycobacterium Tuberculosis Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achtman, M., Morelli, G., Zhu, P., Wirth, T., Diehl, I., Kusecek, B., Vogler, A.J., Wagner, D.M., Allender, C.J., Easterday, W.R., Chenal-Francisque, V., Worsham, P., Thomson, N.R., Parkhill, J., Lindler, L.E., Carniel, E. and Keim, P. (2004). Microevolution and his-tory of the plague bacillus, Yersinia pestis. PNAS. U S A 101, 17837-17842.CrossRefGoogle Scholar
  2. Ammendola, S., Ajello, M., Pasquali, P., Kroll, J.S., Langford, P.R., Rotilio, G., Valenti, P. and Battistoni, A. (2005). Differential contribution of sodC1 and sodC2 to intracellular survival and pathogenicity of Salmonella enterica serovar Choleraesuis. Microbes Infect. 7, 698-707.CrossRefPubMedGoogle Scholar
  3. Bai, G., McCue, L.A. and McDonough, K.A. (2005). Characterization of Mycobacterium tuberculosis Rv3676 (CRPMt), a cyclic AMP receptor protein-like DNA binding protein. J. Bacteriol. 187, 7795-7804.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bakshi, C.S., Malik, M., Regan, K., Melendez, J.A., Metzger, D.W., Pavlov, V.M. and Sellati, T.J. (2006). Superoxide dismutase B gene (sodB)-deficient mutants of Francisella tularensis demonstrate hypersensitivity to oxidative stress and attenuated virulence. J. Bacteriol. 188, 6443-6448.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barnes, A.M. (1982). Surveillance and control of bubonic plague in the United States. Symp. Zool. Soc. London 50, 237-270.Google Scholar
  6. Beauchamp, C. and Fridovich, I. (1971). Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276-287.CrossRefPubMedGoogle Scholar
  7. Bercovier, H., Mollaret, H.H., Alonso, J.M., Brault, J., Fanning, G.R., Steigerwalt, A.G. and Brenner, D.J. (1980). Intra- and interspecies relatedness of Yersinia pestis by DNA hybridization and its relationship to Yersinia pseudotuberculosis. Curr. Microbiol. 4, 225-229.CrossRefGoogle Scholar
  8. Bond, C.J., Huang, J., Hajduk, R., Flick, K.E., Heath, P.J. and Stoddard, B.L. (2000). Cloning, sequence and crystallographic structure of recombinant iron superoxide dismutase from Pseudomonas ovalis. Acta Crystallogr. D Biol. Crystallogr. 56, 1359-1366.CrossRefGoogle Scholar
  9. Brubaker, R.R., Beesley, E.D. and Surgalla, M.J. (1965). Pasteurella pestis: role of pesticin I and iron in experimental plague. Science 149, 422-424.CrossRefPubMedGoogle Scholar
  10. Cash, P. (2003). Proteomics of bacterial pathogens. Adv. Biochem. Eng. Biotechnol. 83, 93-115.PubMedGoogle Scholar
  11. Chain, P.S.G., Carniel, E., Larimer, F.W., Lamerdin, J., Stoutland, P.O., Regala, W.M., Georgescu, A.M., Vergez, L.M., Land, M.L., Motin, V.L., Brubaker, R.R., Fowler, J., Hinnebusch, J., Marceau, M., Medigue, C., Simonet, M., Chenal-Francisque, V., Souza, B., Dacheux, D., Elliott, J.M., Derbise, A., Hauser, L.J. and Garcia, E. (2004). Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudo-tuberculosis. PNAS 101, 13826-13831.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chain, P.S.G., Hu, P., Malfatti, S.A., Radnedge, L., Larimer, F., Vergez, L.M., Worsham, P., “Chu, M.C. and Andersen, G.L. (2006). Complete genome sequence of Yersinia pestis strains Antiqua and Nepal516: evidence of gene reduction in an emerging pathogen. J. Bacteriol. 188, 4453-4463.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Deng, W., Burland, V., Plunkett, G., III, Boutin, A., Mayhew, G.F., Liss, P., Perna, N.T., Rose, D.J., Mau, B., Zhou, S., Schwartz, D.C., Fetherston, J.D., Lindler, L.E., Brubaker, R.R., Plano, G.V., Straley, S.C., McDonough, K.A., Nilles, M.L., Matson, J.S., Blattner, F.R. and Perry, R.D. (2002). Genome Sequence of Yersinia pestis KIM. J. Bacteriol. 184, 4601-4611.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Erickson, D.L., Jarrett, C.O., Wren, B.W. and Hinnebusch, B.J. (2006). Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. J. Bacteriol. 188, 1113-1119.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Eswar, N., John, B., Mirkovic, N., Fiser, A., Ilyin, V.A., Pieper, U., Stuart, A.C., Marti-Renom, M.A., Madhusudhan, M.S., Yerkovich, B. and Sali, A. (2003). Tools for com-parative protein structure modeling and analysis. Nucleic Acids Res. 31, 3375-3380.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ferber, D.M. and Brubaker, R.R. (1981) Plasmids in Yersinia pestis. Infect. Immun. 31, 839-841.PubMedPubMedCentralGoogle Scholar
  17. Ferber, D.M., Fowler, J.M. and Brubaker, R.R. (1981). Mutations to tolerance and resistance to pesticin and colicins in Escherichia coli. J. Bacteriol. 146, 506-511.PubMedPubMedCentralGoogle Scholar
  18. Florczyk, M.A., McCue, L.A., Purkayastha, A., Currenti, E., Wolin, M.J. and McDonough, K.A. (2003). A family of acr-coregulated Mycobacterium tuberculosis genes shares a common DNA motif and requires Rv3133c (dosR or devR) for expression. Infect. Immun. 71, 5332-5343.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Florczyk, M.A., McCue, L.A., Stack, R.F., Hauer, C.R. and McDonough, K.A. (2001). Identi-fication and characterization of mycobacterial proteins differentially expressed under standing and shaking culture conditions, including Rv2623 from a novel class of putative ATP-binding proteins. Infect. Immun. 69, 5777-5785.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gazdik, M. A. and McDonough, K.A. (2005). Identification of cyclic AMP-regulated genes in Mycobacterium tuberculosis complex bacteria under low-oxygen conditions. J. Bacteriol. 187, 2681-2692.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gee, J.M., Valderas, M.W., Kovach, M.E., Grippe, V.K., Robertson, G.T., Ng, W.L., Richardson, J.M., Winkler, M.E. and Roop, R.M. 2nd. (2005). The Brucella abortus Cu, Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice. Infect. Immun. 73, 2873-2880.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gronberg, A. and Kihlstrom, E. (1989). Structural variations and growth potential of Yersinia enterocolitica under different culture conditions. Apmis 97, 227-235.CrossRefPubMedGoogle Scholar
  23. Guyton, A.C., Ed. (1991). Textbook of medical physiology, 8th ed. Philadelphia, PA, W.B. Saunders Company.Google Scholar
  24. Han, Y.W. and Miller, V.L. (1997). Reevaluation of the virulence phenotype of the inv yadA double mutants of Yersinia pseudotuberculosis. Infect. Immun. 65, 327-330.PubMedPubMedCentralGoogle Scholar
  25. Hare, J. M. and McDonough, K.A. (1999). High-frequency RecA-dependent and -independent mechanisms of congo red binding mutations in Yersinia pestis. J. Bacteriol. 181, 4896-4904.PubMedPubMedCentralGoogle Scholar
  26. Hinchliffe, S.J., Isherwood, K.E., Stabler, R.A., Prentice, M.B., Rakin, A., Nichols, R.A., Oyston, P.C.F., Hinds, J., Titball, R.W. and Wren, B.W. (2003) Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotu-berculosis. Genome Res. 13, 2018-2029.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hinnebusch, B.J. (2003). Transmission factors: Yersinia pestis genes required to infect the flea vector of plague. Adv. Exp. Med. Biol. 529, 55-62.CrossRefPubMedGoogle Scholar
  28. Hinnebusch, B.J., Perry, R.D. and Schwan, T.G. (1996). Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273, 367-370.CrossRefPubMedGoogle Scholar
  29. Hinnebusch, B.J., Rudolph, A.E., Cherepanov, P., Dixon, J.E., Schwan, T.G. and Forsberg, A. (2002). Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733-735.CrossRefPubMedGoogle Scholar
  30. Ibrahim, A., Goebel, B.M., Liesack, W., Griffiths, M. and Stackebrandt, E. (1993). The phy-logeny of the genus Yersinia based on 16S rDNA sequences. FEMS Microb. Letters 114, 173-178.Google Scholar
  31. Jungblut, P.R., Muller, E.C., Mattow, J. and Kaufmann, S.H. (2001). Proteomics reveals open reading frames in Mycobacterium tuberculosis H37Rv not predicted by genomics. Infect. Immun. 69, 5905-5907.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jydegaard-Axelsen, A.M., Hoiby, P.E., Holmstrom, K., Russell, N. and Knochel, S. (2004). CO 2 - and anaerobiosis-induced changes in physiology and gene expression of different Listeria monocytogenes strains. Appl. Environ. Microbiol. 70, 4111-4117.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lathem, W.W., Crosby, S.D., Miller, V.L. and Goldman, W.E. (2005). Progression of primary pneumonic plague: A mouse model of infection, pathology, and bacterial transcriptional activity. PNAS 102, 17786-17791.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lide, D.R., Ed. (1997). CRC handbook of chemistry and physics. Cleveland Ohio, CRC Press.Google Scholar
  35. Masse, E. and Gottesman, S. (2002). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. PNAS U S A 99, 4620-4625.CrossRefGoogle Scholar
  36. McDonough, K. A. and Falkow, S. (1989). A Yersinia pestis-specific DNA fragment encodes temperature-dependent coagulase and fibrinolysin-associated phenotypes. Mol. Microbiol. 3, 767-775.CrossRefPubMedGoogle Scholar
  37. McDonough, K.A., Florczyk, M.A. and Kress, Y. (2000). Intracellular passage within macro-phages affects the trafficking of virulent tubercle bacilli upon reinfection of other macro-phages in a serum-dependent manner. Tuber Lung Dis. 80, 259-271.CrossRefPubMedGoogle Scholar
  38. Mollaret, H. H. (1965). Sur la nomenclature et la taxonomic du bacille de malassez et vignal. Int. Bull. Bacteriol. Nomencl. Taxon. 15, 97-106.Google Scholar
  39. Motin, V.L., Georgescu, A.M., Fitch, J.P., Gu, P.P., Nelson, D.O., Mabery, S.L., Garnham, J.B., Sokhansanj, B.A., Ott, L.L., Coleman, M.A., Elliott, J.M., Kegelmeyer, L.M., Wyrobek, A.J., Slezak, T.R., Brubaker, R.R. and Garcia, E. (2004) Temporal global chan-ges in gene expression during temperature transition in Yersinia pestis. J. Bacteriol. 186, 6298-6305.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Najdenski, H.M., Golkocheva, E.N., Vesselinova, A.M. and Russmann, H. (2004). Compari-son of the course of infection of virulent Yersinia enterocolitica serotype O:8 with an isogenic sodA mutant in the peroral rabbit model. Int. J. Med. Microbiol. 294, 383-393.CrossRefPubMedGoogle Scholar
  41. Narasipura, S.D., Ault, J.G., Behr, M.J., Chaturvedi, V. and Chaturvedi, S. (2003). Characteri-zation of Cu, Zn superoxide dismutase (SOD1) gene knock-out mutant of Cryptococcus neoformans var. gattii: role in biology and virulence. Mol. Microbiol. 47, 1681-1694.CrossRefPubMedGoogle Scholar
  42. Parkhill, J., Wren, B.W., Thomson, N.R., Titball, R.W., Holden, M.T., Prentice, M.B., Sebaihia, M., James, K.D., Churcher, C., Mungall, K.L., Baker, S., Basham, D., Bentley, S.D., Brooks, K., Cerdeno-Tarraga, A.M., Chillingworth, T., Cronin, A., Davies, R.M., Davis, P., Dougan, G., Feltwell, T., Hamlin, N., Holroyd, S., Jagels, K., Karlyshev, A.V., Leather, S., Moule, S., Oyston, P.C., Quail, M., Rutherford, K., Simmonds, M., Skelton, J., Stevens, K., Whitehead, S. and Barrell, B.G. (2001). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523-527.CrossRefPubMedGoogle Scholar
  43. Perry, R.D. (1993) Acquisition and storage of inorganic iron and hemin by the yersiniae. Trends Microbiol. 1, 142-147.CrossRefPubMedGoogle Scholar
  44. Perry, R.D. and Fetherston, J.D. (1997). Yersinia pestis - etiologic agent of plague. Clin. Microbiol. Rev. 10, 35-66.PubMedPubMedCentralGoogle Scholar
  45. Poland, J.D. and Barnes, A.M. (1979). Plague. in J.F. Steele (ed.), CRC Handbook Series in Zoonoses, Vol. 1, Section A. Bacterial, rickettsial and mycotic diseases-1979. CRC Press, Inc., Boca Raton, Fla., pp. 515-516.Google Scholar
  46. Portnoy, D.A. and Falkow, S. (1981). Virulence-associated plasmids from Yersinia enterocoli-tica and Yersinia pestis. J. Bacteriol. 148, 877-883.PubMedPubMedCentralGoogle Scholar
  47. Protsenko, O.A., Anisimov, P.I., Mosharov, O.T., Konnov, N.P., Popov, Y.A. and Kokushkin, A.M. (1983) Detection and characterization of Yersinia pestis plasmids determining pes-ticin I, fraction I antigen, and “mouse” toxin synthesis. Soviet Genet. 19, 838-846.Google Scholar
  48. Purkayastha, A., McCue, L.A. and McDonough, K.A., et al. (2002). Identification of a Myco-bacterium tuberculosis putative classical nitroreductase gene whose expression is coregu-lated with that of the acr aene within macrophages, in standing versus shaking cultures, and under low oxygen conditions. Infect. Immun. 70, 1518-1529.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Quan, T. J., Barnes, A.M. and Polland, J.D. (1981). Yersinioses, p. 723-745. In A. Balows and W. J. Hausler, (ed.). Diagnostic procedures for bacterial, mycotic and parasitic infections, 6th edition. American Public Health Association, Washington, D. C.Google Scholar
  50. Roggenkamp, A., Bittner, T., Leitritz, L., Sing, A. and Heesemann, J. (1997). Contribution of the Mn-cofactored superoxide dismutase (SodA) to the virulence of Yersinia enterocoli-tica serotype O8. Infect. Immun. 65, 4705-4710.PubMedPubMedCentralGoogle Scholar
  51. Rosqvist, R., Skurnik, M. and Wolf-Watz, H. (1988). Increased virulence of Yersinia pseudo-tuberculosis by two independent mutations. Nature 334, 522-525.CrossRefPubMedGoogle Scholar
  52. Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A. and Pappin, D.J. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154-1169.CrossRefPubMedGoogle Scholar
  53. Sebbane, F., Lemaîre, N., Sturdevant, D.E., Rebeil, R., Virtaneva, K., Porcella, S.F. and Hinnebusch, B.J. (2006). Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. PNAS 103, 11766-11771.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Seoh, H.K. and Tai, P.C. (1999). Catabolic repression of secB expression is positively con-trolled by cyclic AMP (cAMP) receptor protein-cAMP complexes at the transcriptional level. J. Bacteriol. 181, 1892-1899.PubMedPubMedCentralGoogle Scholar
  55. Simonet, M., Riot, B., Fortineau, M. and Berche, P. (1996). Invasin production by Yersinia pestis is abolished by insertion of an IS200-like element within the inv gene. Infect. Immun. 64, 375-379.PubMedPubMedCentralGoogle Scholar
  56. Sodeinde, O.A. and Goguen, J.D. (1988). Genetic analysis of the 9.5-kilobase virulence plas-mid of Yersinia pestis. Infect. Immun. 56, 2743-2748.PubMedPubMedCentralGoogle Scholar
  57. Sodeinde, O.A., Sample, A.K., Brubaker, R.R. and Goguen, J.D. (1988). Plasminogen activa-tor/coagulase gene of Yersinia pestis is responsible for degradation of plasmid-encoded outer membrane proteins. Infect. Immun. 56, 2749-2752.PubMedPubMedCentralGoogle Scholar
  58. Stabler, R.A., Hinds, J., Witney, A.A., Isherwood, K., Oyston, P., Titball, R., Wren, B., Hinchliffe, S., Prentice, M., Mangan, J.A. and Butcher, P.D. (2003). Construction of a Yersinia pestis microarray. Adv. Exp. Med. Biol. 529, 47-49.CrossRefPubMedGoogle Scholar
  59. Straley, S.C. and Perry, R.D. (1995). Environmental modulation of gene expression and patho-genesis in Yersinia. Trends Microbiol. 3, 310-317.CrossRefPubMedGoogle Scholar
  60. Stretton, S. and Goodman, A.E. (1998). Carbon dioxide as a regulator of gene expression in microorganisms. Antonie Van Leeuwenhoek 73, 79-85.CrossRefPubMedGoogle Scholar
  61. Sun, L., Fukamachi, T., Saito, H. and Kobayashi, H. (2005). Carbon dioxide increases acid resistance in Escherichia coli. Lett. Appl. Microbiol. 40, 397-400.CrossRefPubMedGoogle Scholar
  62. Timm, J., Post, F.A., Bekker, L.G., Walther, G.B., Wainwright, H.C., Manganelli, R., Chan, W.T., Tsenova, L., Gold, B., Smith, I., Kaplan, G. and McKinney, J.D. (2003). Differen-tial expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. PNAS U S A 100, 14321-14326.CrossRefGoogle Scholar
  63. Touati, D. (1997). Superoxide dismutases in bacteria and pathogen protists. Oxidative stress and the molecular biology of antioxidant defenses. J.G. Scandlios. New York, Cold Spring Harbor Laboratory Press: 447-493.Google Scholar
  64. Une, T. (1977). Studies on the pathogenicity of Yersinia enterocolitica. III. Comparative studies between Y. enterocolitica and Y. pseudotuberculosis. Microbiol. Immunol. 21, 505-516.CrossRefPubMedGoogle Scholar
  65. Zhou, D., Han, Y., Song, Y., Tong, Z., Wang, J., Guo, Z., Pei, D., Pang, X., Zhai, J., Li, M., Cui, B., Qi, Z., Jin, L., Dai, R., Du, Z., Bao, J., Zhang, X., Yu, J., Wang, J., Huang, P. and Yang, R. (2004). DNA microarray analysis of genome dynamics in Yersinia pestis: Insights into bacterial genome microevolution and niche adaptation. J. Bacteriol. 186, 5138-5146.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zhou, D., Qin, L., Han, Y., Qiu, J., Chen, Z., Li, B., Song, Y., Wang, J., Guo, Z., Zhai, J., Du, Z., Wang, X. and Yang, R. (2006). Global analysis of iron assimilation and fur regulation in Yersinia pestis. FEMS Microbiol. Lett. 258, 9-17.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Guangchun Bai
    • 1
  • Janice Pata
    • 1
  • Kathleen A. McDonough
    • 1
  • Andrey Golubov
    • 1
  • Eric Smith
    • 1
  1. 1.New York State Department of HealthWadsworth CenterAlbanyUSA

Personalised recommendations