Intermediary Metabolism, Na+, the Low Calcium-Response, and Acute Disease

  • Robert R. Brubaker
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 603)

The variables carriage of pCD, CO2 tension, exogenous ATP, L-glutamate, Mg2+, Na+, pH, source of energy, and temperature are known to modulate the low calcium response of Yersinia pestis in vitro. The role of these effectors and the basis of their interactions are defined here with emphasis on known Y. pestis-specific missense mutations in glucose 6- phosphate dehydrogenase and aspartase, which preclude use of the hexose monophosphate pathway and prevent efficient catabolism of L-glutamic acid, respectively. A physiological Ca2+-deficient rescue scenario is provided that permits essentially full-scale growth of virulent Y. pestis (<0.1 mM Na+ and 25 mM L-glutamate at pH 6.5) with expression of pCD-encoded virulence effectors and their attendant type III secretion system. Multiplication in this environment indicates that Ca2+ prevents innate toxicity of Na+. However, Na+ actually promotes growth in Ca2+-deficient medium at pH 9.0 due to the evident action of Na+- translocating NADH-ubiquinone oxidoreductase. Another Ca2+-deficient rescue scenario (100 mM Na+ and 25 mM L-glutamate at pH 5.5) permitted growth while downregulating pCD-encoded functions. A consequence of the abrupt Na+-mediated bacteriostasis typical of aspartase-deficient Y. pestis is conversion of L-glutamate to L-aspartate with release of the latter into culture supernatant fluids. Occurrence of this event in vivo would radically alter the equilibrium of host amino acid pools thereby contributing to enhanced lethality.


Acute Disease Intermediary Metabolism Yersinia Enterocolitica Yersinia Pestis Francisella Tularensis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achtman, M., Zurth, K., Morelli, C., Torrea, G., Guiyoule, A. and Carniel, E. (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. PNAS 96, 14043-14048.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andersson, S.G.E., Zomorodipour, A., Andersson, J.O., Sicheritz-Ponten, T., Alsmark, U.C.M., Podowski, R.M., Naslund, A.K., Eriksson, A.-S., Winkler, H.H. and Kurland, C.G. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133-140.CrossRefPubMedGoogle Scholar
  3. Anisimov, A.P., Lindler, L.E. and Pier, G.B. (2004) Intraspecific diversity of Yersinia pestis. Clin. Microbiol. Rev. 17, 434-464.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baugh, C.L., Lanham, J.W. and Surgalla, M.J. (1964) Eeffects of biocarbonate on growth of Pasteurella pestis II. Carbon dioxide fixation into oxalacetate by cell-free extracts. J. Bacteriol. 88, 553-558.PubMedPubMedCentralGoogle Scholar
  5. Beesley, E.D., Brubaker, R.R., Janssen, W.A. and Surgalla, M.J. (1967) Pesticins. III. Expression of coagulase and mechanism of fibrinolysis. J. Bacteriol. 94, 19-26.PubMedPubMedCentralGoogle Scholar
  6. Bovarnick, M.R. and Miller, J.C. (1950) Oxidation and transamination of glutamate by Typhus Rickettsiae. J. Biol. Chem. 184, 661-676.PubMedGoogle Scholar
  7. Brownlow, W.J. and Wessman, G.E. (1960) Nutrition of Pasteurella pestis in chemically defined media at temperatures of 36 to 38 C. J. Bacteriol. 79, 299-304.PubMedPubMedCentralGoogle Scholar
  8. Brubaker, R.R. (1967) Growth of Pasteurella pseudotuberculosis in simulated intracellular and extracellular environments. J. Biol. Chem. 117, 403-417.Google Scholar
  9. Brubaker, R.R. (1968) Metabolism of carbohydrates by Pasteurella pseudotuberculosis. J. Bacteriol. 95, 1698-1705.PubMedPubMedCentralGoogle Scholar
  10. Brubaker, R.R. (1972) The genus Yersinia: biochemistry and genetics of virulence. Curr. Top. Microbiol. Immunol. 57, 111-158.CrossRefPubMedGoogle Scholar
  11. Brubaker, R.R. (1991) Factors promoting acute and chronic diseases by yersiniae. Clin. Microbiol. Rev. 4, 309-324.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brubaker, R.R. (2003) Interleukin-10 and Inhibition of Innate Immunity to Yersiniae: Roles of Yops and LcrV (V Antigen). Infect. Immun. 71, 3673-3681.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brubaker, R.R. (2005) Influence of Na+, dicarboxylic amino acids, and pH in modulating the low-calcium response of Yersinia pestis. Infect. Immun. 73, 4743-4752.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brubaker, R.R. and Surgalla, M.J. (1964) The effect of Ca++ and Mg++ on lysis, growth, and production of virulence antigens by Pasteurella pestis. J. Infect. Dis. 114, 13-25.CrossRefPubMedGoogle Scholar
  15. Burrows, T.W. (1957) Virulence of Pasteurella pestis. Nature 179, 1246-1247.CrossRefPubMedGoogle Scholar
  16. Chain, P.S.G., Carniel, E., Larimer, F.W., Lamerdin, J., Stoutland, P.O., Regala, W.M., Georgescu, A.M., Vergez, L.M., Land, M.L., Motin, V.L., Brubaker, R.R., Fowler, J., Hinnebusch, J., Marceau, M., Medigue, C., Simonet, M., Chenal-Francisque, V., Souza, B., Dacheux, D., Elliott, J.M., Derbise, A., Hauser, L.J. and Garcia, E. (2004) Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. PNAS 101, 13826-13831.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Delwiche, E.A., Fukui, G.M., Andrews, A.W. and Surgalla, M.J. (1959) Environmental conditions affecting the population dynamics and the retention of virulence of Pasteurella pestis: the role of carbon dioxide. J. Bacteriol. 77, 355-360.PubMedPubMedCentralGoogle Scholar
  18. Deng, W., Burland, V., Plunkett, G., III, Boutin, A., Mayhew, G.F., Liss, P., Perna, N.T., Rose, D.J., Mau, B., Zhou, S., Schwartz, D.C., Fetherston, J.D., Lindler, L.E., Brubaker, R.R., Plano, G.V., Straley, S.C., McDonough, K.A., Nilles, M.L., Matson, J.S., Blattner, F.R. and Perry, R.D. (2002) Genome Sequence of Yersinia pestis KIM. J. Bacteriol. 184, 4601-4611.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Devignat R (1951) Varietes de l'espece Pasteurella pestis. Nouvelle hypothese. Bull. W.H.O. 4, 247-263.PubMedPubMedCentralGoogle Scholar
  20. Dreyfus, L.A. and Brubaker, R.R. (1978) Consequences of aspartase deficiency in Yersinia pestis. J. Bacteriol. 136, 757-764.PubMedPubMedCentralGoogle Scholar
  21. Englesberg, E. and Ingraham, L. (1957) Meiotrophic mutatns of Pasteurella pestis and their use in the elucidation of nutritional requirements. PNAS 43, 369-372.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ferber, D.M. and Brubaker, R.R. (1981) Plasmids in Yersinia pestis. Infect. Immun. 31, 839-841.PubMedPubMedCentralGoogle Scholar
  23. Fleischmann, R.D., Alland, D., Eisen, J.A., Carpenter, L., White, O., Peterson, J., DeBoy, R., Dodson, R., Gwinn, M., Haft, D., Hickey, E., Kolonay, J.F., Nelson, W.C., Umayam, L.A., Ermolaeva, M., Salzberg, S.L., Delcher, A., Utterback, T., Weidman, J., Khouri, H., Gill, J., Mikula, A., Bishai, W., Jacobs, W.R., Jr., Venter, J.C. and Fraser, C.M. (2002) Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol. 184, 5479-5490.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fowler, J.M. and Brubaker, R.R. (1994) Physiological basis of the low calcium response in Yersinia pestis. Infect. Immun. 62, 5234-5241.PubMedPubMedCentralGoogle Scholar
  25. Fraenkel DG (1968) Selection of Escherichia coli mutants lacking glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase. J. Bacteriol. 95, 1267-1271.PubMedPubMedCentralGoogle Scholar
  26. Goguen, J.D., Yother, J. and Straley, S.C. (1984) Genetic analysis of the low calcium response in Yersinia pestis Mu d1 (Ap lac) insertion mutants. J. Bacteriol. 160, 842-848.PubMedPubMedCentralGoogle Scholar
  27. Good N.E., Winget, G.D., Winter, W., Connolly, T.N., Izawa, S. and Singh, R.M. (1966) Hydrogen ion buffers for biological research. Biochemistry; 5, 467-477.CrossRefPubMedGoogle Scholar
  28. Halpern, Y.S. and Umbarger, H.E. (1960) Conversion of ammonia to amino groups in Escherichia coli K-12 mutants. J. Bacteriol. 80, 285-288PubMedPubMedCentralGoogle Scholar
  29. Heesemann J., Sing A. and Trülzsch, K. (2006) Yersinia’s stratagem: targeting innate and adaptive immune defense. Curr. Opin. Microbiol. 9, 1-7.CrossRefGoogle Scholar
  30. Higuchi, K., Kupferberg, L.L. and Smith, J.L. (1959) Studies on the nutrition and physiology of Pasteurella pestis. III. Effects of calcium ions on the growth of virulent and avirulent strains of Pasteurella pestis. J. Bacteriol. 77, 317-321.PubMedPubMedCentralGoogle Scholar
  31. Higuchi, K. and Smith, J.L. (1961) Studies on the nutrition and physiology of Pasteurella pestis. VI. A differential plating medium for the estimation of the mutation rate to avirulence. J. Bacteriol. 81, 605-608.PubMedPubMedCentralGoogle Scholar
  32. Hinnebusch, B.J., Rudolph, A.E., Cherepanov, P., Dixon, J.E., Schwan, T.G. and Forsberg, A. (2002) Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733-735.CrossRefPubMedGoogle Scholar
  33. Kupferberg, L.L. and Higuchi, K. (1958) Role of calcium ions in the stimulation of growth of virulent strains of Pasteurella pestis. J. Bacteriol. 76,120-121.PubMedPubMedCentralGoogle Scholar
  34. Kutyrev, V., Mehigh, R.J., Motin, V.L., Pokrovskaya, M.S., Smirnov, G.B. and Brubaker, R.R. (1999) Expression of the plague plasminogen activator in Yersinia pseudo-tuberculosis and Escherichia coli. Infect. Immun. 67, 1359-1367.PubMedPubMedCentralGoogle Scholar
  35. Lähteenmäki, K., Virkola, R., Sarén, A., Emödy, L. and Korhonen, T.K. (1998) Expression of plasminogen activator Pla of Yersinia pestis enhances bacterial attachment to the mammalian extracellular matrix. Infect. Immun. 66, 5755-5762.PubMedPubMedCentralGoogle Scholar
  36. Larsson, P., Oyston, P.C.F., Chain, P., Chu, M.C., Duffield, M., Fuxelius, H.-H., Garcia, E., Halltorp, G., Johansson, D., Isherwood, K.E., Karp, P.D., Larsson, E., Liu, Y., Michell, S., Prior, J., Prior, R., Malfatti, S., Sjostedt, A., Svensson, K., Thompson, N., Vergez, L., Wagg, J.K., Wren, B.W., Lindler, L.E., Andersson, S.G.E., Forsman, M. and Titball, R.W. (2005) The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat. Genet. 37, 153-159.CrossRefPubMedGoogle Scholar
  37. Lawton W.D., Erdman R.L. and Surgalla, M.J. (1963) Biosynthesis and purification of V and W antigen in Pasteurella pestis. J. Immunol. 91, 179-184.PubMedGoogle Scholar
  38. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.PubMedGoogle Scholar
  39. Mortlock, R.P. (1962) Gluconate metabolism of Pasteurella pestis. J. Bacteriol. 84, 53-59.PubMedPubMedCentralGoogle Scholar
  40. Mortlock, R.P. and Brubaker, R.R. (1962) Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities of Pasteurella pestis and Pasteurella pseudotuberculosis. J. Bacteriol. 84, 1122-1123.PubMedPubMedCentralGoogle Scholar
  41. Motin, V.L., Georgescu, A.M., Fitch, J.P., Gu, P.P., Nelson, D.O., Mabery, S.L., Garnham, J.B., Sokhansanj, B.A., Ott, L.L., Coleman, M.A., Elliott, J.M., Kegelmeyer, L.M., Wyrobek, A.J., Slezak, T.R., Brubaker, R.R. and Garcia, E. (2004) Temporal Global Changes in Gene Expression during Temperature Transition in Yersinia pestis. J. Bacteriol. 186, 6298-6305.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Parkhill, J., Wren, B.W., Thomson, N.R., Titball, R.W., Holden, M.T., Prentice, M.B., Sebaihia, M., James, K.D., Churcher, C., Mungall, K.L., Baker, S., Basham, D., Bentley, S.D., Brooks, K., Cerdeno-Tarraga, A.M., Chillingworth, T., Cronin, A., Davies, R.M., Davis, P., Dougan, G., Feltwell, T., Hamlin, N., Holroyd, S., Jagels, K., Karlyshev, A.V., Leather, S., Moule, S., Oyston, P.C., Quail, M., Rutherford, K., Simmonds, M., Skelton, J., Stevens, K., Whitehead, S. and Barrell, B.G. (2001) Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523-527.CrossRefPubMedGoogle Scholar
  43. Smith, T. (1934) Parasitism and disease. Princeton University Press, Princton, NJ.Google Scholar
  44. Soupart, P. (1962) Free amino acids of blood and urine in the human. In: J.T. Holden (ed) Amino acid pools. Elsevier Publishing Co., Amsterdam, pp. 220-262.Google Scholar
  45. Viola, R.E. (1998) L-aspartase: new tricks from an old enzyme. In: D.L. Purich (ed) Advances in Enzymology and Related Areas of Molecular Biology. John Wiley & Sons, Inc., New York, pp. 295-341.Google Scholar
  46. Winter, C.C., Cherry, W.B. and Moody, M.D. (1960) An unusual strain of Pasteurella pestis isolated from a fatal human case of plague. Bull. Wld. Hlth. Org. 23, 408-409.Google Scholar
  47. Yellin, T.O. and Wriston, J.C. (1966) Purification and properties of guinea pig serum asparaginase. Biochemistry 5, 1605-1612.CrossRefPubMedGoogle Scholar
  48. Yimga, M.T., Leatham, M.P., Allen, J.H., Laux, D.C., Conway, T. and Cohen, P.S. (2006) Role of gluconeogenesis and the tricarboxylic acid cycle in the virulence of Salmonella enterica serovar Typhimurium in BALB/c mice. J. Bacteriol. 74, 1130-1140.Google Scholar
  49. Zahorchak, R.J., Charnetzky, W.T., Little, R.V. and Brubaker, R.R. (1979) Consequences of Ca2+ deficiency on macromolecular synthesis and adenylate energy charge in Yersinia pestis. J. Bacteriol. 39, 792-799.Google Scholar
  50. Zhou, W., Bertsova, Y.V., Feng, B., Tsatsos, P., Verkhovskaya, M.L., Gennis, R.B., Bogachev, A.V. and Barquera, B. (1999) Sequencing and preliminary characterization of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio harveyi. Biochemistry 38, 16246-16252.CrossRefPubMedGoogle Scholar
  51. Zhou, D., Tong, Z., Song, Y., Han, Y., Pei, D., Pang, X., Zhai, J., Li, M., Cui, B., Qi, Z., Jin, L., Dai, R., Du, Z., Wang, J., Guo, Z., Wang, J., Huang, P. and Yang, R. (2004) Genetics of Metabolic Variations between Yersinia pestis Biovars and the Proposal of a New Biovar, microtus. J. Bacteriol. 186, 5147-5152.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zink, D.L., Feeley, J.G., Wells, J.G., Vanderzant, C., Vickery, J.C., Roof, W.D. and O’Donovan, G.A. (1980) Plasmid-mediated tissue invasiveness in Yersinia enterocolitica . Nature (London) 283, 224-226.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Robert R. Brubaker
    • 1
  1. 1.Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingUSA

Personalised recommendations