Cortical Cholinergic Lesion Causes Aβ Deposition: Cholinergic-Amyloid Fusion Hypothesis

  • Thomas Beach
  • Pamela Potter
  • Lucia Sue
  • Amanda Newell
  • Marissa Poston
  • Raquel Cisneros
  • Yoga Pandya
  • Abraham Fisher
  • Alex Roher
  • Lih-Fen Lue
  • Douglas Walker
Conference paper
Part of the Advances in Behavioral Biology book series (ABBI, volume 57)


Amyloid Precursor Protein Basal Forebrain Cerebral Amyloid Angiopathy Neurobiol Aging Cholinergic Deficit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Neve RL, Robakis NK. Alzheimer's disease: a re-examination of the amyloid hypothesis. Trends Neurosci 1998;21:15–19.PubMedCrossRefGoogle Scholar
  2. 2.
    Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002;297:353–356.PubMedCrossRefGoogle Scholar
  3. 3.
    Sommer B. Alzheimer's disease and the amyloid cascade hypothesis: ten years on. Curr Opin Pharmacol 2002;2:87–92.PubMedCrossRefGoogle Scholar
  4. 4.
    Younkin SG. The role of A beta 42 in Alzheimer's disease. J Physiol Paris 1998;92:289–292.PubMedCrossRefGoogle Scholar
  5. 5.
    Cummings BJ, Satou T, Head E, et al. Diffuse plaques contain C-terminal A beta 42 and not A beta 40: evidence from cats and dogs. Neurobiol Aging 1996;17:653–659.PubMedGoogle Scholar
  6. 6.
    Geula C, Nagykery N, Wu CK. Amyloid-beta deposits in the cerebral cortex of the agedcommon marmoset (Callithrix jacchus): incidence and chemical composition. Acta Neuropathol (Berl) 2002;103:48–58.CrossRefGoogle Scholar
  7. 7.
    Maclean CJ, Baker HF, Ridley RM, Mori H. Naturally occurring and experimentally induced beta-amyloid deposits in the brains of marmosets (Callithrix jacchus). J Neural Transm 2000;107:799–814.PubMedCrossRefGoogle Scholar
  8. 8.
    Head E, McCleary R, Hahn FF, et al. Region-specific age at onset of beta-amyloid in dogs. Neurobiol Aging 2000;21:89–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Selkoe DJ, Bell DS, Podlisny MB, et al. Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer's disease. Science 1987;235:873–877.PubMedCrossRefGoogle Scholar
  10. 10.
    Price DL, Martin LJ, Sisodia SS, et al. Aged non-human primates: an animal model of age-associated neurodegenerative disease. Brain Pathol 1991;1:287–296.PubMedGoogle Scholar
  11. 11.
    Gearing M, Rebeck GW, Hyman BT, et al. Neuropathology and apolipoprotein E profile of aged chimpanzees: implications for Alzheimer disease. Proc Natl Acad Sci U S A 1994;91:9382–9386.PubMedCrossRefGoogle Scholar
  12. 12.
    McDowell I. Alzheimer's disease: insights from epidemiology. Aging (Milano) 2001;13:143–162.Google Scholar
  13. 13.
    Delaere P, He Y, Fayet G, et al. Beta A4 deposits are constant in the brain of the oldest old: an immunocytochemical study of 20 French centenarians. Neurobiol Aging 1993;14:191–194.PubMedCrossRefGoogle Scholar
  14. 14.
    Bouras C, Hof PR, Giannakopoulos P, et al. Regional distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of elderly patients: a quantitative evaluation of a one-year autopsy population from a geriatric hospital. Cereb Cortex 1994;4:138–150.PubMedCrossRefGoogle Scholar
  15. 15.
    Beach TG, Potter PE, Kuo YM, et al. Cholinergic deafferentation of the rabbit cortex: a new animal model of Abeta deposition. Neurosci Lett 2000;283:9–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Roher AE, Kuo YM, Potter PE, et al. Cortical cholinergic denervation elicits vascular A beta deposition. Ann N Y Acad Sci 2000;903:366–373.PubMedCrossRefGoogle Scholar
  17. 17.
    Mann DM, Yates PO, Marcyniuk B. Monoaminergic neurotransmitter systems in presenile Alzheimer's disease and in senile dementia of Alzheimer type. Clin Neuropathol 1984;3:199–205.PubMedGoogle Scholar
  18. 18.
    Mann DM, Yates PO, Marcyniuk B. Changes in nerve cells of the nucleus basalis of Meynert in Alzheimer's disease and their relationship to ageing and to the accumulation of lipofuscin pigment. Mech Ageing Dev 1984;25:189–204.PubMedCrossRefGoogle Scholar
  19. 19.
    Mann DM, Yates PO, Marcyniuk B. Alzheimer's presenile dementia, senile dementia of Alzheimer type and Down's syndrome in middle age form an age related continuum of pathological changes. Neuropathol Appl Neurobiol 1984;10:185–207.PubMedCrossRefGoogle Scholar
  20. 20.
    McGeer PL, McGeer EG, Suzuki J, et al. Aging, Alzheimer's disease, and the cholinergic system of the basal forebrain. Neurology 1984;34:741–745.PubMedGoogle Scholar
  21. 21.
    Mountjoy CQ, Rossor MN, Iversen LL, Roth M. Correlation of cortical cholinergic and GABA deficits with quantitative neuropathological findings in senile dementia. Brain 1984;107(Pt 2):507–518.PubMedCrossRefGoogle Scholar
  22. 22.
    Rossor MN, Iversen LL, Johnson AJ, et al. Cholinergic deficit in frontal cerebral cortex in Alzheimer's disease is age dependent. Lancet 1981;2:1422.PubMedCrossRefGoogle Scholar
  23. 23.
    Lowes-Hummel P, Gertz HJ, Ferszt R, Cervos-Navarro J. The basal nucleus of Meynert revised: the nerve cell number decreases with age. Arch Gerontol Geriatr 1989;8:21–27.PubMedCrossRefGoogle Scholar
  24. 24.
    Perry EK, Blessed G, Tomlinson BE, et al. Neurochemical activities in human temporal lobe related to aging and Alzheimer-type changes. Neurobiol Aging 1981;2:251–256.PubMedCrossRefGoogle Scholar
  25. 25.
    Perry EK, Johnson M, Kerwin JM, et al. Convergent cholinergic activities in aging and Alzheimer's disease. Neurobiol Aging 1992;13:393–400.PubMedCrossRefGoogle Scholar
  26. 26.
    Bird TD, Stranahan S, Sumi SM, Raskind M. Alzheimer's disease: choline acetyltransferase activity in brain tissue from clinical and pathological subgroups. Ann Neurol 1983;14:284–293.PubMedCrossRefGoogle Scholar
  27. 27.
    Beach TG, Honer WG, Hughes LH. Cholinergic fibre loss associated with diffuse plaques in the non-demented elderly: the preclinical stage of Alzheimer's disease? Acta Neuropathol (Berl) 1997;93:146–153.CrossRefGoogle Scholar
  28. 28.
    Wenk GL, Pierce DJ, Struble RG, et al. Age-related changes in multiple neurotransmitter systems in the monkey brain. Neurobiol Aging 1989;10:11–19.PubMedCrossRefGoogle Scholar
  29. 29.
    Beal MF, Walker LC, Storey E, et al. Neurotransmitters in neocortex of aged rhesus monkeys. Neurobiol Aging 1991;12:407–412.PubMedCrossRefGoogle Scholar
  30. 30.
    Smith DE, Roberts J, Gage FH, Tuszynski MH. Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. Proc Natl Acad Sci USA 1999;96:10893–10898.PubMedCrossRefGoogle Scholar
  31. 31.
    Funato H, Yoshimura M, Kusui K, et al. Quantitation of amyloid beta-protein (A beta) in the cortex during aging and in Alzheimer's disease. Am J Pathol 1998;152:1633–1640.PubMedGoogle Scholar
  32. 32.
    Davies L, Wolska B, Hilbich C, et al. A4 amyloid protein deposition and the diagnosis of Alzheimer's disease: prevalence in aged brains determined by immunocytochemistry compared with conventional neuropathologic techniques. Neurology 1988;38:1688–1693.PubMedGoogle Scholar
  33. 33.
    Beach TG, Kuo YM, Spiegel K, et al. The cholinergic deficit coincides with Abeta deposition at the earliest histopathologic stages of Alzheimer disease. J. Neuropathol. Exp Neurol 2000;59:308–313.PubMedGoogle Scholar
  34. 34.
    Katzman R, Terry R, DeTeresa R, et al. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 1988;23:138–144.PubMedCrossRefGoogle Scholar
  35. 35.
    Buxbaum JD, Oishi M, Chen HI, et al. Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proc Natl Acad Sci U S A 1992;89:10075–10078.PubMedCrossRefGoogle Scholar
  36. 36.
    Nitsch RM, Slack BE, Wurtman RJ, Growdon JH. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 1992;258:304–307.PubMedCrossRefGoogle Scholar
  37. 37.
    Bymaster FP, Wong DT, Mitch CH, et al. Neurochemical effects of the M1 muscarinic agonist xanomeline (LY246708/NNC11–0232). J Pharmacol Exp Ther 1994;269:282–289.PubMedGoogle Scholar
  38. 38.
    Bymaster FP, Carter PA, Peters SC, et al. Xanomeline compared to other muscarinic agents on stimulation of phosphoinositide hydrolysis in vivo and other cholinomimetic effects. Brain Res 1998;795:179–190.PubMedCrossRefGoogle Scholar
  39. 39.
    Nitsch RM, Growdon JH. Role of neurotransmission in the regulation of amyloid beta-protein precursor processing, Biochem Pharmacol 1994;47:1275–1284.PubMedCrossRefGoogle Scholar
  40. 40.
    Nitsch RM. From acetylcholine to amyloid: neurotransmitters and the pathology of Alzheimer's disease. Neurodegeneration 1996;5:477–482.PubMedCrossRefGoogle Scholar
  41. 41.
    Nitsch RM, Wurtman RJ, Growdon JH. Regulation of APP processing: potential for the therapeutical reduction of brain amyloid burden. Ann N Y Acad Sci 1996;777:175–182.PubMedCrossRefGoogle Scholar
  42. 42.
    Haring R, Gurwitz D, Barg J, et al. Amyloid precursor protein secretion via muscarinic receptors: reduced desensitization using the M1-selective agonist AF102B. Biochem Biophys Res Commun 1994;203:652–658.PubMedCrossRefGoogle Scholar
  43. 43.
    Haring R, Gurwitz D, Barg J, et al. NGF promotes amyloid precursor protein secretion via muscarinic receptor activation. Biochem Biophys Res Commun 1995;213:15–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Eckols K, Bymaster FP, Mitch CH, et al. The muscarinic M1 agonist xanomeline increases soluble amyloid precursor protein release from Chinese hamster ovary-m1 cells. Life Sci 1995;57:1183–1190.PubMedCrossRefGoogle Scholar
  45. 45.
    Wolf BA, Wertkin AM, Jolly YC, et al. Muscarinic regulation of Alzheimer's disease amyloid precursor protein secretion and amyloid beta-protein production in human neuronal NT2N cells. J Biol Chem 1995;270:4916–4922.PubMedCrossRefGoogle Scholar
  46. 46.
    Hung AY, Haass C, Nitsch RM, et al. Activation of protein kinase C inhibits cellular production of the amyloid beta-protein. J Biol Chem 1993;268:22959–22962.PubMedGoogle Scholar
  47. 47.
    Pittel Z, Heldman E, Barg J, et al. Muscarinic control of amyloid precursor protein secretion in rat cerebral cortex and cerebellum. Brain Res 1996;742:299–304.PubMedCrossRefGoogle Scholar
  48. 48.
    Muller D, Wiegmann H, Langer U, et al. Lu 25-109, a combined m1 agonist and m2 antagonist, modulates regulated processing of the amyloid precursor protein of Alzheimer's disease. J Neural Transm 1998;105:1029–1043.PubMedCrossRefGoogle Scholar
  49. 49.
    Muller DM, Mendla K, Farber SA, Nitsch RM. Muscarinic M1 receptor agonists increase the secretion of the amyloid precursor protein ectodomain. Life Sci 1997;60:985–991.PubMedCrossRefGoogle Scholar
  50. 50.
    Farber SA, Nitsch RM, Schulz JG, Wurtman RJ. Regulated secretion of beta-amyloid precursor protein in rat brain. J Neurosci 1995;15:7442–7451.PubMedGoogle Scholar
  51. 51.
    Beach TG, Kuo Y, Schwab C, et al. Reduction of cortical amyloid beta levels in guinea pig brain after systemic administration of physostigmine. Neurosci Lett 2001;310:21–24.PubMedCrossRefGoogle Scholar
  52. 52.
    Beach TG, Walker DG, Potter PE, et al. Reduction of cerebrospinal fluid amyloid beta after systemic administration of M1 muscarinic agonists. Brain Res 2001;905:220–223.PubMedCrossRefGoogle Scholar
  53. 53.
    Lin L, Georgievska B, Mattsson A, Isacson O. Cognitive changes and modified processing of amyloid precursor protein in the cortical and hippocampal system after cholinergic synapse loss and muscarinic receptor activation. Proc Natl Acad Sci U S A 1999;96:12108–12113.PubMedCrossRefGoogle Scholar
  54. 54.
    Hock C, Maddalena A, Heuser I, et al. Treatment with the selective muscarinic agonist talsaclidine decreases cerebrospinal fluid levels of total amyloid beta-peptide in patients with Alzheimer's disease. Ann N Y Acad Sci 2000;920:285–291.PubMedCrossRefGoogle Scholar
  55. 55.
    Nitsch RM, Deng M, Tennis M, et al. The selective muscarinic M1 agonist AF102B decreases levels of total Abeta in cerebrospinal fluid of patients with Alzheimer's disease. Ann Neurol 2000;48:913–918.PubMedCrossRefGoogle Scholar
  56. 56.
    Basun H, Nilsberth C, Eckman C, et al. Plasma levels of Abeta42 and Abeta40 in Alzheimer patients during treatment with the acetylcholinesterase inhibitor tacrine. Dement Geriatr Cogn Disord 2002;14:156–160.PubMedCrossRefGoogle Scholar
  57. 57.
    Wallace W, Ahlers ST, Gotlib J, et al. Amyloid precursor protein in the cerebral cortex is rapidly and persistently induced by loss of subcortical innervation. Proc Natl Acad Sci U S A 1993;90:8712–8716.PubMedCrossRefGoogle Scholar
  58. 58.
    Wallace WC, Bragin V, Robakis NK, et al. Increased biosynthesis of Alzheimer amyloid precursor protein in the cerebral cortex of rats with lesions of the nucleus basalis of Meynert. Brain Res Mol Brain Res 1991;10:173–178.PubMedCrossRefGoogle Scholar
  59. 59.
    Wallace WC, Lieberburg I, Schenk D, et al. Chronic elevation of secreted amyloid precursor protein in subcortically lesioned rats, and its exacerbation in aged rats. J Neurosci 1995;15:4896–4905.PubMedGoogle Scholar
  60. 60.
    Beeson JG, Shelton ER, Chan HW, Gage FH. Age and damage induced changes in amyloid protein precursor immunohistochemistry in the rat brain. J Comp Neurol 1994;342:69–77.PubMedCrossRefGoogle Scholar
  61. 61.
    Leanza G. Chronic elevation of amyloid precursor protein expression in the neocortex and hippocampus of rats with selective cholinergic lesions. Neurosci Lett 1998;257:53–56.PubMedCrossRefGoogle Scholar
  62. 62.
    Lin L, LeBlanc CJ, Deacon TW, Isacson O. Chronic cognitive deficits and amyloid precursor protein elevation after selective immunotoxin lesions of the basal forebrain cholinergic system. Neuroreport 1998;9:547–552.PubMedCrossRefGoogle Scholar
  63. 63.
    Rossner S, Ueberham U, Yu J, et al. In vivo regulation of amyloid precursor protein secretion in rat neocortex by cholinergic activity. Eur J Neurosci 1997;9:2125–2134.PubMedCrossRefGoogle Scholar
  64. 64.
    Geula C, Zhan SS. Altered processing of amyloid precursor protein following specific cholinergic denervation of rat cortex. Soc Neurosci Abstr 1997;23:820.Google Scholar
  65. 65.
    Beach TG, Walker DG, Cynader MS, Hughes LH. Increased beta-amyloid precursor protein mRNA in the rat cerebral cortex and hippocampus after chronic systemic atropine treatment. Neurosci Lett 1996;210:13–16.PubMedCrossRefGoogle Scholar
  66. 66.
    Struble RG, Cork LC, Whitehouse PJ, Price DL. Cholinergic innervation in neuritic plaques. Science 1982;216:413–415.PubMedCrossRefGoogle Scholar
  67. 67.
    Arendt T, Bigl V, Tennstedt A, Arendt A. Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer's disease. Neuroscience 1985;14:1–14.PubMedCrossRefGoogle Scholar
  68. 68.
    Beach TG, McGeer EG. Senile plaques, amyloid beta-protein, and acetylcholinesterase fibres: laminar distributions in Alzheimer's disease striate cortex. Acta Neuropathol (Berl) 1992;83:292–299.CrossRefGoogle Scholar
  69. 69.
    Arendash GW, Millard WJ, Dunn AJ, Meyer EM. Long-term neuropathological and neurochemical effects of nucleus basalis lesions in the rat. Science 1987;238:952–956.PubMedCrossRefGoogle Scholar
  70. 70.
    Fuentes C, Roch G, König N. Light and electron microscopical observations in the nucleus basalis of Meynert and in hippocampus of the rat after injection of a cholinotoxin: degeneration and reorganization. Z Mikrosk Anat Forsch 1987;101:451–460.PubMedGoogle Scholar
  71. 71.
    Thal LJ, Mandel RJ, Terry RD, et al. Nucleus basalis lesions fail to induce senile plaques in the rat. Exp Neurol 1990;108:88–90.PubMedCrossRefGoogle Scholar
  72. 72.
    DeStrooper B, Simons M, Multhaup G, et al. Production of intracellular amyloid-containing fragments in hippocampal neurons expressing human amyloid precursor protein and protection against amyloidogenesis by subtle amino acid substitutions in the rodent sequence. EMBO J 1995;14:4932–4938.Google Scholar
  73. 73.
    Otvos L Jr, Szendrei GI, Lee VM, Mantsch HH. Human and rodent Alzheimer beta-amyloid peptides acquire distinct conformations in membrane-mimicking solvents. Eur J Biochem 1993;211:249–257.PubMedCrossRefGoogle Scholar
  74. 74.
    Reaume AG, Howland DS, Trusko SP, et al. Enhanced amyloidogenic processing of the beta-amyloid precursor protein in gene-targeted mice bearing the Swedish familial Alzheimer's disease mutations and a “humanized” Abeta sequence. J Biol Chem 1996;271:23380–23388.PubMedCrossRefGoogle Scholar
  75. 75.
    Davidson JS, West RL, Kotikalapudi P, Maroun LE. Sequence and methylation in the beta/A4 region of the rabbit amyloid precursor protein gene. Biochem Biophys Res Commun 1992;188:905–911.PubMedCrossRefGoogle Scholar
  76. 76.
    Johnstone EM, Chaney MO, Norris FH, et al. Conservation of the sequence of the Alzheimer's disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis. Brain Res Mol Brain Res 1991;10:299–305.PubMedCrossRefGoogle Scholar
  77. 77.
    Johnston MV, McKinney M, Coyle JT. Evidence for a cholinergic projection to neocortex from neurons in basal forebrain. Proc Natl Acad Sci U S A 1979;76:5392–5396.PubMedCrossRefGoogle Scholar
  78. 78.
    Mantione CR, Fisher A, Hanin I. The AF64A-treated mouse: possible model for central cholinergic hypofunction. Science 1981;1213:579–580.CrossRefGoogle Scholar
  79. 79.
    Muir JL, Page KJ, Sirinathsinghji DJ, et al. Excitotoxic lesions of basal forebrain cholinergic neurons: effects on learning, memory and attention. Behav Brain Res 1993;57:123–131.PubMedCrossRefGoogle Scholar
  80. 80.
    Lindefors N, Boatell ML, Mahy N, Persson H. Widespread neuronal degeneration after ibotenic acid lesioning of cholinergic neurons in the nucleus basalis revealed by in situ hybridization. Neurosci Lett 1992;135:262–264.PubMedCrossRefGoogle Scholar
  81. 81.
    Book AA, Wiley RG, Schweitzer JB. Specificity of 192 IgG-saporin for NGF receptor-positive cholinergic basal forebrain neurons in the rat. Brain Res 1992;590:350–355.PubMedCrossRefGoogle Scholar
  82. 82.
    Book AA, Wiley RG, Schweitzer JB. 192 IgG-saporin. I. Specific lethality for cholinergic neurons in the basal forebrain of the rat. J Neuropathol Exp Neurol., 1994;53:95–102.PubMedGoogle Scholar
  83. 83.
    Heckers S, Ohtake T, Wiley RG, et al. Complete and selective cholinergic denervation of rat neocortex and hippocampus but not amygdala by an immunotoxin against the p75 NGF receptor. J Neurosci 1994;14:1271–1289.PubMedGoogle Scholar
  84. 84.
    Walsh TJ, Kelly RM, Dougherty KD, et al. Behavioral and neurobiological alterations induced by the immunotoxin 192-IgG-saporin: cholinergic and non-cholinergic effects following i.c.v. injection. Brain Res 1995;702:233–245.PubMedCrossRefGoogle Scholar
  85. 85.
    Wenk GL, Stoehr JD, Quintana G, et al. Behavioral, biochemical, histological, and electrophysiological effects of 192 IgG-saporin injections into the basal forebrain of rats. J Neurosci 1994;14:5986–5995.PubMedGoogle Scholar
  86. 86.
    Wiley RG, Oeltmann TN, Lappi DA. Immunolesioning: selective destruction of neurons using immunotoxin to rat NGF receptor. Brain Res 1991;562:149–153.PubMedCrossRefGoogle Scholar
  87. 87.
    Fine A, Hoyle C, Maclean CJ, et al. Learning impairments following injection of a selective cholinergic immunotoxin, ME20.4 IgG-saporin, into the basal nucleus of Meynert in monkeys. Neuroscience 1997;81:331–343.PubMedCrossRefGoogle Scholar
  88. 88.
    Leanza G. Chronic elevation of amyloid precursor protein expression in the neocortex and hippocampus of rats with selective cholinergic lesions. Neurosci Lett 1998;257:53–56.PubMedCrossRefGoogle Scholar
  89. 89.
    Fuller SJ, Storey E, Li QX, et al. Intracellular production of beta A4 amyloid of Alzheimer's disease: modulation by phosphoramidon and lack of coupling to the secretion of the amyloid precursor protein. Biochemistry 1995;34:8091–8098.PubMedCrossRefGoogle Scholar
  90. 90.
    Petanceska SS, Nagy V, Frail D, Gandy S. Ovariectomy and 17beta-estradiol modulate the levels of Alzheimer's amyloid beta peptides in brain. Exp Gerontol 2000;35:1317–1325.PubMedCrossRefGoogle Scholar
  91. 91.
    Savage MJ, Trusko SP, Howland DS, et al. Turnover of amyloid beta-protein in mouse brain and acute reduction of its level by phorbol ester. J Neurosci 1998;18:1743–1752.PubMedGoogle Scholar
  92. 92.
    Vincent B, Smith JD. Effect of estradiol on neuronal Swedish-mutated beta-amyloid precursor protein metabolism: reversal by astrocytic cells. Biochem Biophys Res Commun 2000;271:82–85.PubMedCrossRefGoogle Scholar
  93. 93.
    Fisher A. Therapeutic strategies in Alzheimer's disease: M1 muscarinic agonists. Jpn J Pharmacol 2000;84:101–112.PubMedCrossRefGoogle Scholar
  94. 94.
    Czepita D. Influence of alpha and beta-adrenergic stimulators and blockers on the electroretinogram and visually evoked potentials of the rabbit. Biomed Biochim Acta 1990;49:509–513.PubMedGoogle Scholar
  95. 95.
    Wrenn CC, Picklo MJ, Lappi DA, et al. Central noradrenergic lesioning using anti-DBH-saporin: anatomical findings. Brain Res 1996;740:175–184.PubMedCrossRefGoogle Scholar
  96. 96.
    Beach TG, Tago H, Nagai T, et al. Perfusion-fixation of the human brain for immunohistochemistry: comparison with immersion-fixation. J Neurosci Methods 1987;19:183–192.PubMedCrossRefGoogle Scholar
  97. 97.
    Tago H, Kimura H, Maeda T. Visualization of detailed acetylcholinesterase fiber and neuron staining in rat brain by a sensitive histochemical procedure. J Histochem Cytochem 1986;34:1431–1438.PubMedGoogle Scholar
  98. 98.
    Braak H, Braak E. Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol 1991;1:213–216.PubMedGoogle Scholar
  99. 99.
    Beach TG, McGeer EG. Cholinergic fiber loss occurs in the absence of synaptophysin depletion in Alzheimer's disease primary visual cortex. Neurosci Lett 1992;142:253–256.PubMedCrossRefGoogle Scholar
  100. 100.
    Geula C, Mesulam MM. Cortical cholinergic fibers in aging and Alzheimer's disease: a morphometric study. Neuroscience 1989;33:469–481.PubMedCrossRefGoogle Scholar
  101. 101.
    Fonnum, F. Radiochemical micro assays for the determination of choline acetyltransferase and acetylcholinesterase activities. Biochem J 1969;115:465–472.PubMedGoogle Scholar
  102. 102.
    Beach TG, Walker D, Sue L, et al. Immunotoxin lesion of the cholinergic nucleus basalis causes Aβ deposition: towards a physiologic animal model of Alzheimer's disease. Curr Med Chem 2003;3:57–75.Google Scholar
  103. 103.
    Weller RO, Massey A, Newman TA, et al. Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer's disease. Am J Pathol 1998;153:725–733.PubMedGoogle Scholar
  104. 104.
    Weller RO, Massey A, Kuo YM, Roher AE. Cerebral amyloid angiopathy: accumulation of A beta in interstitial fluid drainage pathways in Alzheimer's disease. Ann N Y Acad Sci 2000;903:110–117.PubMedCrossRefGoogle Scholar
  105. 105.
    Bowen DM, Benton JS, Spillane JA, et al. Choline acetyltransferase activity and histopathology of frontal neocortex from biopsies of demented patients. J Neurol Sci 1982;57:191–202.PubMedCrossRefGoogle Scholar
  106. 106.
    Bowen DM, Allen SJ, Benton JS, et al. Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer's disease. J Neurochem 1983;41:266–272.PubMedCrossRefGoogle Scholar
  107. 107.
    Francis PT, Palmer AM, Sims NR, et al. Neurochemical studies of early-onset Alzheimer's disease: possible influence on treatment. N Engl J Med 1985;313:7–11.PubMedCrossRefGoogle Scholar
  108. 108.
    Francis PT, Webster MT, Chessell IP, et al. Neurotransmitters and second messengers in aging and Alzheimer's disease. Ann N Y Acad Sci 1993;695:19–26.PubMedCrossRefGoogle Scholar
  109. 109.
    Lowe SL, Francis PT, Procter AW, et al. Gamma-aminobutyric acid concentration in brain tissue at two stages of Alzheimer's disease. Brain 1988;111:785–799.PubMedCrossRefGoogle Scholar
  110. 110.
    Perry EK, Perry RH. A review of neuropathological and neurochemical correlates of Alzheimer's disease. Dan Med Bull 1985;32(suppl 1):27–34.PubMedGoogle Scholar
  111. 111.
    Palmer AM, Gershon S. Is the neuronal basis of Alzheimer's disease cholinergic or glutamatergic? FASEB J 1990;4:2745–2752.PubMedGoogle Scholar
  112. 112.
    Palmer AM. Neurochemical studies of Alzheimer's disease. Neurodegeneration 1996;5:381–391.PubMedCrossRefGoogle Scholar
  113. 113.
    Procter AW, Lowe SL, Palmer AM, et al. Topographical distribution of neurochemical changes in Alzheimer's disease. J Neurol Sci 1988;84:125–140.PubMedCrossRefGoogle Scholar
  114. 114.
    Procter AW. Neurochemical correlates of dementia. Neurodegeneration 1996;5:403–407.PubMedCrossRefGoogle Scholar
  115. 115.
    Davis KL, Mohs RC, Marin D, et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 1999;281:1401–1406.PubMedCrossRefGoogle Scholar
  116. 116.
    DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002;51:145–155.PubMedCrossRefGoogle Scholar
  117. 117.
    Gilmor ML, Erickson JD, Varoqui H, et al. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer's disease. J Comp Neurol 1999;411:693–704.PubMedCrossRefGoogle Scholar
  118. 118.
    Tiraboschi P, Hansen LA, Alford M, et al. The decline in synapses and cholinergic activity is asynchronous in Alzheimer's disease. Neurology 2000;55:1278–1283.PubMedGoogle Scholar
  119. 119.
    Pearson RC, Powell TP. Anterograde vs. retrograde degeneration of the nucleus basalis medialis in Alzheimer's disease. J Neural Transm Suppl 1987;24:139–146.PubMedGoogle Scholar
  120. 120.
    Thomas G Beach, Pamela E Potter, Lucia I Sue PPYPMRPSLBT. Cortical cholinergic deficit is associated with plaque density at preclinical stages of Alzeimer's disease. Presented at the 9th International Conference on Alzheimer's Disease and Related Disorders, 2004.Google Scholar
  121. 121.
    Beach TG, Sue LI, Scott S, Sparks DL. Neurofibrillary tangles are constant in aging human nucleus basalis. Alzheimers Rep 1998;1:375–380.Google Scholar
  122. 122.
    Sassin I, Schultz C, Thal DR, et al. Evolution of Alzheimer's disease-related cytoskeletal changes in the basal nucleus of Meynert. Acta Neuropathol (Berl) 2000;100:259–269.CrossRefGoogle Scholar
  123. 123.
    Minger SL, Davies P. Persistent innervation of the rat neocortex by basal forebrain cholinergic neurons despite the massive reduction of cortical target neurons. I. Morphometric analysis. Exp Neurol 1992;117:124–138.PubMedCrossRefGoogle Scholar
  124. 124.
    Gau JT, Steinhilb ML, Kao TC, et al. Stable beta-secretase activity and presynaptic cholinergic markers during progressive central nervous system amyloidogenesis in Tg2576 mice. Am J Pathol 2002;160:731–738.PubMedGoogle Scholar
  125. 125.
    Jaffar S, Counts SE, Ma SY, et al. Neuropathology of mice carrying mutant APP(swe) and/or PS1(M146L) transgenes: alterations in the p75(NTR) cholinergic basal forebrain septo-hippocampal pathway. Exp Neurol 2001;170:227–243.PubMedCrossRefGoogle Scholar
  126. 126.
    Bronfman FC, Moechars D, Van Leuven F. Acetylcholinesterase-positive fiber deafferentation and cell shrinkage in the septo-hippocampal pathway of aged amyloid precursor protein London mutant transgenic mice. Neurobiol Dis 2000;7:152–168.PubMedCrossRefGoogle Scholar
  127. 127.
    Hernandez D, Sugaya K, Qu T, et al. Survival and plasticity of basal forebrain cholinergic systems in mice transgenic for presenilin-1 and amyloid precursor protein mutant genes. Neuroreport 2001;12:1377–1384.PubMedCrossRefGoogle Scholar
  128. 128.
    Wong TP, Debeir T, Duff K, Cuello AC. Reorganization of cholinergic terminals in the cerebral cortex and hippocampus in transgenic mice carrying mutated presenilin-1 and amyloid precursor protein transgenes. J Neurosci 1999;19:2706–2716.PubMedGoogle Scholar
  129. 129.
    Boncristiano S, Calhoun ME, Kelly PH, et al. Cholinergic changes in the APP23 transgenic mouse model of cerebral amyloidosis. J Neurosci 2002;22:3234–3243.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Thomas Beach
    • 1
  • Pamela Potter
  • Lucia Sue
  • Amanda Newell
  • Marissa Poston
  • Raquel Cisneros
  • Yoga Pandya
  • Abraham Fisher
  • Alex Roher
  • Lih-Fen Lue
  • Douglas Walker
  1. 1.Civin Laboratory for NeuropathologySun Health Research InstituteSun CityUSA

Personalised recommendations