Skip to main content

Rationale for Glutamatergic and Cholinergic Approaches for the Treatment of Alzheimer’s Disease

  • Conference paper
  • 2000 Accesses

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 57))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stanhope KJ, Mclenachan AP, Dourish CT. Dissociation between cognitive and motor/motivational deficits in the delayed matching to position test: effects of scopolamine, 8-OH-DPAT and EAA antagonists. Psychopharmacology. 1995;122:268–280.

    Article  PubMed  CAS  Google Scholar 

  2. Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry 1999;66:137–147.

    PubMed  CAS  Google Scholar 

  3. Davis KL, Mohs RC, Marin D, et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 1999;281:1401–1406.

    Article  PubMed  CAS  Google Scholar 

  4. DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002;51:145–155.

    Article  PubMed  CAS  Google Scholar 

  5. Court J, Martin-Ruiz C, Piggott M, et al. Nicotinic receptor abnormalities in Alzheimer's disease. Biol Psychiatry 2001;49:175–184.

    Article  PubMed  CAS  Google Scholar 

  6. Lai MK, Lai OF, Keene J, et al. Psychosis of Alzheimer's disease is associated with elevated muscarinic M2 binding in the cortex. Neurology 2001;57:805–811.

    PubMed  CAS  Google Scholar 

  7. Warpman U, Alafuzoff I, Nordberg A. Coupling of muscarinic receptors to GTP proteins in postmortem human brain: alterations in Alzheimer's disease. Neurosci Lett 1993;150:39–43.

    Article  PubMed  CAS  Google Scholar 

  8. Perry EK, Morris CM, Court JA, et al. Alteration in nicotine binding sites in Parkinson's disease, Lewy body dementia and Alzheimer's: possible index of early neuropathology. Neuroscience 1995;64:385–395.

    Article  PubMed  CAS  Google Scholar 

  9. Francis PT, Sims NR, Procter AW, Bowen DM. Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer's disease: investigative and therapeutic perspectives. J Neurochem 1993;60:1589–1604.

    Article  PubMed  CAS  Google Scholar 

  10. Dijk SN, Francis PT, Stratmann GC, Bowen DM. Cholinomimetics increase glutamate outflow by an action on the corticostriatal pathway: implications for Alzheimer's disease. J Neurochem 1995;65:2165–2169.

    Article  PubMed  CAS  Google Scholar 

  11. Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer's disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging 2004;21:453–478.

    Article  PubMed  CAS  Google Scholar 

  12. Gauthier S, Feldman H, Hecker J, et al. Efficacy of donepezil on behavioral symptoms in patients with moderate to severe Alzheimer's disease. Int Psychogeriatr 2002;14:389–404.

    Article  PubMed  Google Scholar 

  13. Minger SL, Esiri MM, McDonald B, et al. Cholinergic deficits contribute to behavioural disturbance in patients with dementia. Neurology 2000;55:1460–1467.

    PubMed  CAS  Google Scholar 

  14. Fonnum F. Glutamate: a neurotransmitter in mammalian brain. J Neurochem 1984;42:1–11.

    Article  PubMed  CAS  Google Scholar 

  15. Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science. 1997;278:412–419.

    Article  PubMed  CAS  Google Scholar 

  16. Greenamyre JT, Maragos WF, Albin RL, et al. Glutamate transmission and excitotxicity in Alzheimer's disease. Prog Neuropsychopharmacol 1988;12:421–430.

    Article  CAS  Google Scholar 

  17. Greenamyre JT, Penney JB, Damato CJ, Young AB. Alterations in L-glutamate binding in Alzheimer's and Huntingdon's diseases. Science 1985;227:1496–1499.

    Article  PubMed  CAS  Google Scholar 

  18. Greenamyre JT, Penney JB, D'Amato CJ, Young AB. Dementia of the Alzheimer's type: changes in hippocampal L-[3H]glutamate binding. J Neurochem 1987;48:543–551.

    Article  PubMed  CAS  Google Scholar 

  19. Procter AW, Wong EH, Stratmann GC, et al. Reduced glycine stimulation of [3H]MK-801 binding in Alzheimer's disease. J Neurochem 1989;53:698–704.

    Article  PubMed  CAS  Google Scholar 

  20. Najlerahim A, Bowen DM. Regional weight loss of the cerebral cortex and some subcortical nuclei in senile dementia of the Alzheimer type. Acta Neuropathol (Berl) 1988;75:509–512.

    Article  CAS  Google Scholar 

  21. Najlerahim A, Bowen DM. Biochemical measurements in Alzheimer's disease reveal a necessity for improved neuroimaging techniques to study metabolism. Biochem J 1988;251:305–308.

    PubMed  CAS  Google Scholar 

  22. Procter AW, Francis PT, Holmes C, et al. APP isoforms show correlations with neurones but not with glia in brains of demented subjects. Acta Neuropathol (Berl) 1994;88:545–552.

    Article  CAS  Google Scholar 

  23. Westphalen RI, Scott HL, Dodd PR. Synaptic vesicle transport and synaptic membrane transporter sites in excitatory amino acid nerve terminals in Alzheimer disease. J Neural Transm 2003;110:1013–1027.

    Article  PubMed  CAS  Google Scholar 

  24. Procter AW, Palmer AM, Francis PT, et al. Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer's disease. J Neurochem 1988;50:790–802.

    Article  PubMed  CAS  Google Scholar 

  25. Keller JN, Mark RJ, Bruce AJ, et al. 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 1997;80:685–696.

    Article  PubMed  CAS  Google Scholar 

  26. Danysz W, Parsons CG, Quack G. NMDA channel blockers: memantine and amino-aklylcyclohexanes: in vivo characterization. Amino Acids 2000;19:167–172.

    Article  PubMed  CAS  Google Scholar 

  27. Francis PT. Glutamatergic systems in Alzheimer's disease. Int J Geriat Psychiatry 2003;18:S15-S21.

    Article  Google Scholar 

  28. Chessell IP, Francis PT, Pangalos MN, et al. Localisation of muscarinic (m1) and other neurotransmitter receptors on corticofugal-projecting pyramidal neurones. Brain Res 1993;632:86–94.

    Article  PubMed  CAS  Google Scholar 

  29. Chessell IP, Humphrey PPA. Nicotinic and muscarinic receptor-evoked depolarisations recorded from a novel cortical brain slice preparation. Neuropharmacology 1995;34:1289–1296.

    Article  PubMed  CAS  Google Scholar 

  30. Chessell IP, Pearson RCA, Heath PR, et al. Selective loss of cholinergic receptors following unilateral intracortical injection of volkensin. Exp Neurol 1997;147:183–191.

    Article  PubMed  CAS  Google Scholar 

  31. Turrini P, Casu MA, Wong TP, et al. Cholinergic nerve terminals establish classical synapses in the rat cerebral cortex: synaptic pattern and age-related atrophy. Neuroscience 2001;105:277–285.

    Article  PubMed  CAS  Google Scholar 

  32. Francis PT, Pearson RCA, Lowe SL, et al. The dementia of Alzheimer's disease: an update. J Neurol Neurosurg Psychiatry 1987;50:242–243.

    Article  PubMed  CAS  Google Scholar 

  33. Zilles K, Werner L, Qu M, et al. Quantitative autoradiography of 11 different transmitter binding sites in the basal forebrain region of the rat: evidence of heterogeneity in distribution patterns. Neuroscience 1991;42:473–481.

    Article  PubMed  CAS  Google Scholar 

  34. Martin LJ, Blackstone CD, Levey AI, et al. Cellular localizations of AMPA glutamate receptors within the basal forebrain magnocellular complex of rat and monkey. J Neurosci 1993;13:2249–2263.

    PubMed  CAS  Google Scholar 

  35. Ikonomovic MD, Armstrong DM. Distribution of AMPA receptor subunits in the nucleus basalis of Meynert in aged humans: implications for selective neuronal degeneration. Brain Res 1996;716:229–232.

    Article  PubMed  CAS  Google Scholar 

  36. Ikonomovic MD, Nocera R, Mizukami K, Armstrong DM. Age-related loss of the AMPA receptor subunits GluR2/3 in the human nucleus basalis of Meynert. Exp Neurol 2000;166:363–375.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Francis, P.T., Kirvell, S.L. (2008). Rationale for Glutamatergic and Cholinergic Approaches for the Treatment of Alzheimer’s Disease. In: Fisher, A., Memo, M., Stocchi, F., Hanin, I. (eds) Advances in Alzheimer’s and Parkinson’s Disease. Advances in Behavioral Biology, vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72076-0_43

Download citation

Publish with us

Policies and ethics