Co-expression of FTDP-17 Human Tau and GSK-3ß (or APPSW) in Transgenic Mice: Induction of Tau Polymerization and Neurodegeneration

  • Jesús Avila
  • Tobias Engel
  • José J. Lucas
  • Mar Pérez
  • Alicia Rubio
  • Félix Hernández
Conference paper
Part of the Advances in Behavioral Biology book series (ABBI, volume 57)


Double Transgenic Mouse Amyloid Precursor Protein Gene Single Transgenic Mouse Multiple System Tauopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alzheimer A. Über eine eigenartige Erkrankung der Hirninde. Z Psychiatr Psych Gericht Med 1907;64:146–148.Google Scholar
  2. 2.
    Glenner GG, Wong CW. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984;120:885–890.PubMedCrossRefGoogle Scholar
  3. 3.
    Beyreuther K, Masters CL. Amyloid precursor protein (APP) and beta A4 amyloid in the etiology of Alzheimer's disease: precursor-product relationships in the derangement of neuronal function. Brain Pathol 1991;1:241–251.PubMedGoogle Scholar
  4. 4.
    Grundke-Iqbal I, Iqbal K, George L, et al. Amyloid protein and neurofibrillary tangles coexist in the same neuron in Alzheimer disease. Proc Natl Acad Sci U S A 1989;86:2853–2857.PubMedCrossRefGoogle Scholar
  5. 5.
    Morishima-Kawashima M, Hasegawa M, Takio K, et al. Proline-directed and non-proline-directed phosphorylation of PHF-tau. J Biol Chem 1995;270:823–829.PubMedCrossRefGoogle Scholar
  6. 6.
    Xie L, Helmerhorst E, Taddei K, et al. Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci 2002;22:RC221.PubMedGoogle Scholar
  7. 7.
    Arriagada PV, Marzloff K, Hyman BT. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer's disease. Neurology 1992;42:1681–1688.PubMedGoogle Scholar
  8. 8.
    Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 1992;42:631–639.PubMedGoogle Scholar
  9. 9.
    Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci 2001;24:1121–1159.PubMedCrossRefGoogle Scholar
  10. 10.
    Spillantini MG, Goedert M. Tau protein pathology in neurodegenerative diseases. Trends Neurosci 1998;21:428–433.PubMedCrossRefGoogle Scholar
  11. 11.
    Spillantini MG, Murrell JR, Goedert M, et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A 1998;95:7737–7741.PubMedCrossRefGoogle Scholar
  12. 12.
    Kosik KS. Alzheimer's disease: a cell biological perspective. Science 1992;256:780–783.PubMedCrossRefGoogle Scholar
  13. 13.
    Brion JP, Tremp G, Octave JN. Transgenic expression of the shortest human tau affects its compartmentalization and its phosphorylation as in the pretangle stage of Alzheimer's disease. Am J Pathol 1999;154:255–270.PubMedGoogle Scholar
  14. 14.
    Ishihara T, Hong M, Zhang B, et al. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 1999;24:751–762.PubMedCrossRefGoogle Scholar
  15. 15.
    Spittaels K, Van den Haute C, Van Dorpe J, et al. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 1999;155:2153–2165.PubMedGoogle Scholar
  16. 16.
    Probst A, Gotz, J, Wiederhold KH, et al. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol (Berl) 2000;99:469–481.CrossRefGoogle Scholar
  17. 17.
    Gotz J, Tolnay M, Barmettler R, et al. Human tau transgenic mice: towards an animal model for neuro- and glial-fibrillary lesion formation. Adv Exp Med Biol 2001;487:71–83.PubMedGoogle Scholar
  18. 18.
    Lewis J, McGowan E, Rockwood J, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 2000;25:402–405.PubMedCrossRefGoogle Scholar
  19. 19.
    Lim F, Hernandez F, Lucas JJ, et al. FTDP-17 mutations in tau transgenic mice provoke lysosomal abnormalities and tau filaments in forebrain. Mol Cell Neurosci 2001;18:702–714.PubMedCrossRefGoogle Scholar
  20. 20.
    Allen B, Ingram E, Takao M, et al. Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 2002;22:9340–9351.PubMedGoogle Scholar
  21. 21.
    Tanemura K, Murayama M, Akagi,T, et al. Neurodegeneration with tau accumulation in a transgenic mouse expressing V337M human tau. J Neurosci 2002;22:133–141.PubMedGoogle Scholar
  22. 22.
    Tatebayashi T, Miyasaka T, Chui DH, et al. Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci U S A 2002;99:13896–13901.PubMedCrossRefGoogle Scholar
  23. 23.
    Boutajangout A, Authelet M, Blanchard V, et al. Characterization of cytoskeletal abnormalities in mice transgenic for wild-type human tau and familial Alzheimer's disease mutants of APP and presenilin-1. Neurobiol Dis 2004;15:47–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Lucas JJ, Hernandez F, Gomez-Ramos P, et al. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 2001;20:27–39.PubMedCrossRefGoogle Scholar
  25. 25.
    Perez M, Hernandez F, Lim F, et al. Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J Alzheimers Dis 2003;5:301–308.PubMedGoogle Scholar
  26. 26.
    Mullan M, Crawford F, Axelman K, et al. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1992;1:345–347.PubMedCrossRefGoogle Scholar
  27. 27.
    Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002;297:353–356.PubMedCrossRefGoogle Scholar
  28. 28.
    Engel T, Lucas JJ, Gomez-Ramos P, et al. Co-expression of FTDP-17 tau and GSK-3β in transgenic mice induce tau polymerization and neurodegeneration. Neurobiol Aging 2006;27:1258–1268.).PubMedCrossRefGoogle Scholar
  29. 29.
    Perez M, Ribe E, Rubio A, et al. Characterization of a double (amyloid precursor protein-tau) transgenic: tau phosphorylation and aggregation. Neuroscience 2005;130:339–347.PubMedCrossRefGoogle Scholar
  30. 30.
    Phiel CJ, Wilson CA, Lee VM, Klein PS. GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature 2003;423:435–439.PubMedCrossRefGoogle Scholar
  31. 31.
    Hoeflich KP, Luo J, Rubie EA, et al. Requirement for glycogen synthase kinase-3beta in cell survival and NF- kappaB activation. Nature 2000;406:86–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Farias GG, Godoy JA, Vazquez MC, et al. The anti-inflammatory and cholinesterase inhibitor bifunctional compound IBU-PO protects from beta-amyloid neurotoxicity by acting on Wnt signaling components. Neurobiol Dis 2005;18:176–183.PubMedCrossRefGoogle Scholar
  33. 33.
    Goedert M. Filamentous nerve cell inclusions in neurodegenerative diseases: tauopathies and alpha-synucleinopathies. Philos Trans R Soc Lond B Biol Sci 1999;354:1101–1118.PubMedCrossRefGoogle Scholar
  34. 34.
    Soto C, Kascsak RJ, Saborio GP, et al. Reversion of prion protein conformational changes by synthetic β sheet breaker peptides. Lancet 2000;355:192–197.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jesús Avila
    • 1
  • Tobias Engel
  • José J. Lucas
  • Mar Pérez
  • Alicia Rubio
  • Félix Hernández
  1. 1.Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM). Facultad de Ciencias. Campus de CantoblancoUniversidad Autónoma de Madrid28049-MadridSpain

Personalised recommendations