Advertisement

Expression of Wnt Receptors, Frizzled, in Rat Neuronal Cells

  • Marcelo A. Chacón
  • Marcela Columbres
  • Nibaldo C. Inestrosa
Conference paper
Part of the Advances in Behavioral Biology book series (ABBI, volume 57)

Keywords

Conditional Transgenic Mouse High Mobility Group Family Williams Syndrome Deletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nusse R, Varmus HE. Wnt genes. Cell 1992;69(7):1073–1087.PubMedCrossRefGoogle Scholar
  2. 2.
    Polakis P. Wnt signaling and cancer. Genes Dev 2000;14(15):1837–1851.PubMedGoogle Scholar
  3. 3.
    Gould TD, Manji HK. The Wnt signaling pathway in bipolar disorder. Neuroscientist 2002;8:497–511.PubMedCrossRefGoogle Scholar
  4. 4.
    Cotter D, Kerwin R, al-Sarraji S, et al. Abnormalities of Wnt signaling in schizophrenia: evidence for neurodevelopmental abnormality. Neuroreport 1998;9:1379–1383.PubMedCrossRefGoogle Scholar
  5. 5.
    Miyaoka T, Seno T, Ishino H. Increased expression of Wnt-1 in schizophrenia brains. Schizophr Res 1999;38:1–6.PubMedCrossRefGoogle Scholar
  6. 6.
    De Ferrari GV, Inestrosa NC. Wnt signaling function in Alzhemer’s disease. Brain Res Brain Res Rev 2000;33(1):1–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Anderton BH. Alzheimer's disease: clues from flies and worms. Curr Biol 1999;9(3):R106–R109.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen RH, Ding WV, McCormick F. Wnt signaling to beta-catenin involves two interactive components: glycogen synthase kinase-3beta inhibition and activation of protein kinase C J Biol Chem 2000;275(23):17894–17899.CrossRefGoogle Scholar
  9. 9.
    Aberle H, Bauer A, Stappert J, et al. Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 1997;16(13):3797–3804.PubMedCrossRefGoogle Scholar
  10. 10.
    Busciglio J, Lorenzo A, Yeh F, Yankner BA. β-Amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 1995;14:879–888.PubMedCrossRefGoogle Scholar
  11. 11.
    Hedgepeth CM, Conrad LJ, Zhang J, et al. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol 1997;185(1):82–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Inestrosa NC, Alvarez A, Godoy J, et al. Acetylcholinesterase-amyloid-beta-peptide interaction and Wnt signaling involvement in Abeta neurotoxicity. Acta Neurol Scand Suppl 2000;176:53–59.PubMedCrossRefGoogle Scholar
  13. 13.
    Inestrosa NC, De Ferrari GV, Garrido JL, et al. Wnt signaling involvement in beta-amyloid-dependent neurodegeneration. Neurochem Int 2002;41(5):341–344.PubMedCrossRefGoogle Scholar
  14. 14.
    Alvarez AR, Godoy JA, Mullendorff K, et al. Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons. Exp Cell Res 2004;297:186–196.PubMedCrossRefGoogle Scholar
  15. 15.
    De Ferrari GV, Chacón MA, Barría MI, et al. Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by β-amyloid fibrils. Mol Psychiatry 2003;8:195–208.PubMedCrossRefGoogle Scholar
  16. 16.
    Lucas JJ, Hernandez F, Gomez-Ramos P, et al. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 2001;20(1-2):27–39.PubMedCrossRefGoogle Scholar
  17. 17.
    Barnes MR, Duckworth DM. Frizzled proteins constitute a novel family of G protein-coupled receptors, most closely related to the secretin family. Trends Pharmacol Sci 1998;19:399–400.PubMedCrossRefGoogle Scholar
  18. 18.
    Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB. The G-protein coupled receptors in the human genome form five main families: phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 2003;63:1256–1272.PubMedCrossRefGoogle Scholar
  19. 19.
    Bhanot P, Brink M, Samos CH, et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 1996;382:225–230.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang Y, Macke JP, Abella BS, et al. A large family of putative transmembrane receptors homologous to the product of the Drosophila tissue polarity gene frizzled. J Biol Chem 1996;271(8):4468–4476.PubMedCrossRefGoogle Scholar
  21. 21.
    Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 1998;14:59–88.PubMedCrossRefGoogle Scholar
  22. 22.
    Moldzik M. Planar polarity in the Drosophila eye: a multifaceted view of signaling specificity and cross-talk. EMBO J 1999;18:6873–6879.CrossRefGoogle Scholar
  23. 23.
    Strutt D. Frizzled signalling and cell polarisation in Drosophila and vertebrates. Development 2003;130:4501–4513.PubMedCrossRefGoogle Scholar
  24. 24.
    Slusarski DC, Corces VG, Moon RT. Interaction of Wnt and a frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 1997;390:410–413.PubMedCrossRefGoogle Scholar
  25. 25.
    Kühl M, Sheldahl LC, Park M, et al. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 2000;16:279–283.PubMedCrossRefGoogle Scholar
  26. 26.
    Pinson KI, Brennan J, Monkley S, et al. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 2000;407:535–538.PubMedCrossRefGoogle Scholar
  27. 27.
    Tamai K, Semenov M, Kato Y, et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 2000;407:530–535.PubMedCrossRefGoogle Scholar
  28. 28.
    Wehrli M, Dougan ST, Caldwell K, et al. Arrow encodes an LDL-receptor-related protein essential for Wingless signaling. Nature 2000;407(6803):527–530.PubMedCrossRefGoogle Scholar
  29. 29.
    Liu G, Bafico A, Aaronson S. The mechanism of endogenous receptor activation functionally distinguishes prototype canonical and noncanonical Wnts. Mol Cell Biol 2005;25(9):3475–3482.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang Y, Huso D, Cahill H, et al. Progressive cerebellar, auditory, and esophageal dysfunction caused by targeted disruption of the frizzled-4 gene. J Neurosci 2001;21:4761–4771.PubMedGoogle Scholar
  31. 31.
    Wang Y, Thekdi N, Smallwood PM, et al. Frizzled-3 is required for the development of major fiber tracts in the rostral CNS. J Neurosci 2002;22:8563–8573.PubMedGoogle Scholar
  32. 32.
    Shimogori T, VanSant J, Paik E, Grove EA. Members of the Wnt, Fz, and Frp gene families expressed in postnatal mouse cerebral cortex. J Comp Neurol 2004;473(4):496–510.PubMedCrossRefGoogle Scholar
  33. 33.
    Fuentealba RA, Farias G, Scheu M, et al. Signal transduction during amyloid-β-peptide neurotoxicity: role in Alzheimer disease. Brain Res Brain Res Rev 2004;47:275–289.PubMedCrossRefGoogle Scholar
  34. 34.
    Willert J, Epping M, Pollack JR, et al. A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev Biol 2002;2:8.PubMedCrossRefGoogle Scholar
  35. 35.
    Cadigan KM, Fish MP, Rulifson EJ, Nusse R. Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell 1998;93(5):767–777.PubMedCrossRefGoogle Scholar
  36. 36.
    Van Raay TJ, Moore KB, Iordanova I, et al. Frizzled 5 signaling governs the neural potential of progenitors in the developing Xenopus retina. Neuron 2005;46:23–36.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhao C, Aviles C, Abel RA, et al. Hippocampal and visuospatial learning defects in mice with a deletion of frizzled 9, a gene in the Williams syndrome deletion interval. Development 2005;132:2917–2927.PubMedCrossRefGoogle Scholar
  38. 38.
    Sheng M, Sala C. PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 2001;24:1–29.PubMedCrossRefGoogle Scholar
  39. 39.
    Hering H, Sheng M. Direct interaction of Frizzled-1, -2, -4, and -7 with PDZ domains of PSD-95. FEBS Lett 2002;521(1-3):185–189.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marcelo A. Chacón
    • 1
  • Marcela Columbres
  • Nibaldo C. Inestrosa
  1. 1.Centro de Regulación Celular y Patología “Joaquín V. Luco” (CRCP), MIFAB, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileChile

Personalised recommendations