Skip to main content

Physiological Processing of the Cellular Prion Protein and βAPP: Enzymes and Regulation

  • Conference paper
Advances in Alzheimer’s and Parkinson’s Disease

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 57))

  • 1992 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glenner GG, Wong CW. Alzheimer's disease: initial report of purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984;120:885–890.

    Article  PubMed  CAS  Google Scholar 

  2. Kang J, Lemaire HG, Unterbeck A, et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987;325:733–736.

    Article  PubMed  CAS  Google Scholar 

  3. Wilquet V, De Strooper B. Amyloid-beta precursor protein processing in neurodegeneration. Curr Opin Neurobiol 2004;14:82–88.

    Article  CAS  Google Scholar 

  4. Saitoh T, Sundsmo M, Roch JM, et al. Secreted form of amyloid β protein precursor is involved in the growth regulation of fibroblasts. Cell 1989;58:615–622.

    Article  PubMed  CAS  Google Scholar 

  5. Sisodia SS. β-Amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci U S A 1992;89:6075–6079.

    Article  PubMed  CAS  Google Scholar 

  6. Roberts SB, Ripellino JA, Ingalls KM, et al. Non-amyloidogenic cleavage of the β-amyloid precursor protein by an integral membrane metalloendopeptidase. J Biol Chem 1994;269:3111–3116.

    PubMed  CAS  Google Scholar 

  7. Chen SG, Teplow DB, Pachi P, et al. Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem 1995;270:19173–19180.

    Article  PubMed  CAS  Google Scholar 

  8. Forloni G, Angeretti N, Chiesa R, et al. Neurotoxicity of a prion protein fragment. Nature 1993;362:543–546.

    Article  PubMed  CAS  Google Scholar 

  9. Koike H, Tomioka S, Sorimachi H, et al. Membrane-anchored metalloprotease MDC9 has an α-secretase activity responsible for processing the amyloid precursor protein. Biochem J 1999;343:371–375.

    Article  PubMed  CAS  Google Scholar 

  10. Lammich S, Kojro E, Postina R, et al. Constitutive and regulated α-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A 1999;96:3922–3927.

    Article  PubMed  CAS  Google Scholar 

  11. Buxbaum JD, Liu KN, Luo Y, et al. Evidence that tumor necrosis factor α-converting enzyme is involved in regulated β-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A 1999;96:3922–3927.

    Article  Google Scholar 

  12. Ledesma MD, Da Silva JS, Crassaerts K, et al. Brain plasmin enhances APP α-cleavage and Aβ degradation and is reduced in Alzheimer's disease brains. EMBO Rep 2000;1:530–535.

    PubMed  CAS  Google Scholar 

  13. Tagawa K, Kunishita T, Maruyama K, et al. Alzheimer's disease amyloid β-clipping enzyme (APP secretase): identification, purification, and characterization of the enzyme. Biochem Biophys Res Commun 1991;177:377–387.

    Article  PubMed  CAS  Google Scholar 

  14. Miyazaki K, Hasegawa M, Funahashi K, Umeda M. A metalloprotease inhibitor domain in Alzheimer amyloid protein precursor. Nature 1993;362:839–841.

    Article  PubMed  CAS  Google Scholar 

  15. Komano H, Seeger M, Gandy SE, et al. Involvement of cell surface glycosyl-phosphatidylinositol-linked aspartyl proteases in α-secretase-type cleavage and ectodomain solubilization of human Alzheimer β-amyloid precursor protein in yeast. J Biol Chem 1998;273:31648–31651.

    Article  PubMed  CAS  Google Scholar 

  16. Chen M, Durr J, Fernandez HL. Possible role of calpain in normal processing of β-amyloid precursor protein in human platelets. Biochem Biophys Res Commun 2000;273:170–175.

    Article  PubMed  CAS  Google Scholar 

  17. Buxbaum JD, Gandy SE, Cicchetti P, et al. Processing of Alzheimer β/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation. Proc Natl Acad Sci U S A 1990;87:6003–6006.

    Article  PubMed  CAS  Google Scholar 

  18. Xu H, Sweeney D, Greengard P, Gandy SE. Metabolism of Alzheimer β-amyloid precursor protein: regulation by protein kinase A in intact cells and in a cell-free system. Proc Natl Acad Sci U S A 1996;93:4081–4084.

    Article  PubMed  CAS  Google Scholar 

  19. Marambaud P, Wilk S, Checler F. Protein kinase A phosphorylation of the proteasome: a contribution to the α-secretase pathway in human cells. J Neurochem 1996;67:2616–2619.

    PubMed  CAS  Google Scholar 

  20. Efthimiopoulos S, Punj S, Manolopoulos V, et al. Intracellular cyclic AMP inhibits constitutive and phorbol ester-stimulated cleavage of amyloid precursor protein. J Neurochem 1996;67:872–875.

    Article  PubMed  CAS  Google Scholar 

  21. Marambaud P, Ancolio K, Alves da Costa C, Checler F. Effects of protein kinase A inhibitors on the production of Aβ40 and Aβ42 by human cells expressing normal and Alzheimer's disease-linked mutated βAPP and presenilin 1. Br J Pharmacol 1999;126:1186–1190.

    Article  PubMed  CAS  Google Scholar 

  22. Mills J, Charest DL, Lam F, et al. Regulation of amyloid precursor protein catabolism involves the mitogen-activated protein kinase signal transduction pathway. J Neurosci 1997;17:9415–9422.

    PubMed  CAS  Google Scholar 

  23. Petanceska SS, Gandy SE. The phosphatidylinositol 3-kinase inhibitor wortmannin alters the metabolism of the Alzheimer's amyloid precursor protein. J Neurochem 1999;73:2316–2320.

    Article  PubMed  CAS  Google Scholar 

  24. Phiel CJ, Wilson CA, Lee VMY, Klein PS. GSK-3α regulates production of Alzheimer's disease amyloid-β peptides. Nature 2003;423:435–439.

    Article  PubMed  CAS  Google Scholar 

  25. Mudher A, Chapman S, Richardson J, et al. Dishevelled regulates the metabolism of amyloid precursor protein via protein kinase C/mitogen-activated protein kinase and c-jun terminal kinase. J Neurosci 2001;21:4987–4995.

    PubMed  CAS  Google Scholar 

  26. Liu F, Su Y, Li B, Zhou Y, et al. Regulation of amyloid precursor protein (APP) phosphorylation and processing by p35/Cdk5 and p25/Cdk5. FEBS Lett 2003;547:193–196.

    Article  PubMed  CAS  Google Scholar 

  27. Liu F, Su Y, Li B, Ni B. Regulation of amyloid precursor protein expression and secretion via activation of ERK1/2 by hepatocyte growth factor in HEK293 cells transfected with APP751. Exp Cell Res 2003;287:387–396.

    Article  PubMed  CAS  Google Scholar 

  28. Rossner S, Ueberham U, Schliebs R, et al. Regulated secretion of amyloid precursor protein by TrkA receptor stimulation in rat pheochromocytoma-12 cells is mitogen activated protein kinase sensitive. Neurosci Lett 1999;271:97–100.

    Article  PubMed  CAS  Google Scholar 

  29. Maillet M, Robert SJ, Cacquevel M, et al. Crosstalk between Rap1 and Rac regulates secretion of sAPPββ Nat Cell Biol 2003;5:633–639.

    Article  PubMed  CAS  Google Scholar 

  30. Kinouchi T, Sorimachi H, Maruyama K, et al. Conventional protein kinase C (PKC)-α and novel PKCε, but not –δ, increase the secretion of an N-terminal fragment of Alzheimer's disease amyloid precursor protein from PKC cDNA transfected 3Y1 cells. FEBS Lett 1995;364:203–206.

    Article  PubMed  CAS  Google Scholar 

  31. Nitsch RM, Slack BE, Wurtman RJ, Growdon JH. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 1992;258:304–307.

    Article  PubMed  CAS  Google Scholar 

  32. Davis-Salinas J, Saporito-Irwin SM, Donovan FM, et al. Thrombin receptor activation induces secretion and nonamyloidogenic processing of amyloid β-protein precursor. J Biol Chem 1994;269:22623–22627.

    PubMed  CAS  Google Scholar 

  33. Lee RKK, Wurtman RJ, Cox AJ, Nitsch RM. Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc Natl Acad Sci U S A 1995;92:8083–8087.

    Article  PubMed  CAS  Google Scholar 

  34. Refolo LM, Salton SRJ, Anderson JP, et al. Nerve and epidermal growth factors induce the release of the Alzheimer amyloid precursor from PC12 cell cultures. Biochem Biophys Res Commun 1989;164:664–670.

    Article  PubMed  CAS  Google Scholar 

  35. Robert SJ, Zugaza JL, Fischmeister R, et al. The human serotonin 5-HT4 receptor regulates secretion of non-amyloidogenic precursor protein. J Biol Chem 2001;276:44881–44888.

    Article  PubMed  CAS  Google Scholar 

  36. Schubert D, Jin LW, Saitoh T, Cole G. The regulation of amyloid β protein precursor secretion and its modulatory role in cell adhesion. Neuron 1989;3:689–694.

    Article  PubMed  CAS  Google Scholar 

  37. Emmerling MR, Moore CJ, Doyle PD, et al. Phospholipase A2 activation influences the processing and secretion of the amyloid precursor protein. Biochem Biophys Res Commun 1993;197:292–297.

    Article  PubMed  CAS  Google Scholar 

  38. Dash PK, Moore AN. Enhanced processing of APP induced by IL-1β can be reduced by indomethacin and nordihydroguaiaretic acid. Biochem Biophys Res Commun 1995;208:542–548.

    Article  PubMed  CAS  Google Scholar 

  39. McConlogue L, Castellano F, deWit C, et al. Differential effects of a rab6 mutant on secretory versus amyloidogenic processing of Alzheimer's β-amyloid precursor protein. J Biol Chem 1996;271:1343–1348.

    Article  PubMed  CAS  Google Scholar 

  40. Schrader-Fischer G, Paganetti PA. Effect of alkalizing agents on the processing of the β-amyloid precursor protein. Brain Res 1996;716:91–100.

    Article  PubMed  CAS  Google Scholar 

  41. Borchardt T, Camakaris J, Cappai R, et al. Copper inhibits β-amyloid production and stimulates the non-amyloidogenic pathway of amyloid precursor protein secretion. Biochem J 1999;344:461–467.

    Article  PubMed  CAS  Google Scholar 

  42. Avramovich Y, Amit T, Youdim MBH. Non-steroidal anti-inflammatory drugs stimulate secretion of non-amyloidogenic precursor protein. J Biol Chem 2002;277:31466–31473.

    Article  PubMed  CAS  Google Scholar 

  43. Colciaghi F, Borroni B, Zimmermann M, et al. Amyloid precursor protein metabolism is regulated toward alpha-secretase pathway by ginkgo biloba extracts. Neurobiol Dis 2004;16:454–460.

    Article  PubMed  Google Scholar 

  44. Xu H, Gouras GK, Greenfield JP, et al. Estrogen reduces neuronal generation of Alzheimer β-amyloid peptides. Nat Med 1998;4:447–451.

    Article  PubMed  CAS  Google Scholar 

  45. Gouras GK, Xu H, Gross RS, et al. Testosterone reduces neuronal secretion of Alzheimer's β-amyloid peptides. Proc Natl Acad Sci U S A 2000;97:1202–1205.

    Article  PubMed  CAS  Google Scholar 

  46. Refolo LM, Pappolla MA, LaFrancois J, et al. A cholesterol-lowering drug reduces β-amyloid pathology in a transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2001;8:890–899.

    Article  PubMed  CAS  Google Scholar 

  47. Zimmermann M, Gardoni F, Marcello E, et al. Acetylcholinesterase inhibitors increase ADAM10 activity by promoting its trafficking in neuroblastoma cell lines. J Neurochem 2004;90:1489–1499.

    Article  PubMed  CAS  Google Scholar 

  48. Zimmermann M, Borroni B, Cattabeni F, et al. Cholinesterase inhibitors influence APP metabolism in Alzheimer diseases patients. Neurobiol Dis 2005;19:237–242.

    Article  PubMed  CAS  Google Scholar 

  49. Kojro E, Gimpl G, Lammich S, et al. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM10. Proc Natl Acad Sci U S A 2001;98:5815–5820.

    Article  PubMed  CAS  Google Scholar 

  50. Alfa Cissé M, Sunyach C, Lefranc-Jullien S, et al. The disintegrin ADAM9 indirectly contributes to the physiological processing of cellular prion by modulating ADAM10 activity. J Biol Chem 2005;280:40624–40631.

    Article  CAS  Google Scholar 

  51. Vincent B, Paitel E, Saftig P, et al. The disintegrins ADAM10 and TACE contribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein. J Biol Chem 2001;276:37743–37746.

    Article  PubMed  CAS  Google Scholar 

  52. Praus M, Kettelgerdes G, Baier M, et al. Stimulation of plasminogen activation by recombinant cellular prion protein is conserved in the NH2-terminal fragment PrP23–110. Thromb Haemost 2003;89:812–819.

    PubMed  CAS  Google Scholar 

  53. Vincent B, Paitel E, Frobert Y, et al. Phorbol ester-regulated cleavage of normal prion protein in HEK293 human cells and murine neurons. J Biol Chem 2000;275:35612–35616.

    Article  PubMed  CAS  Google Scholar 

  54. Allinson TMJ, Parkin ET, Turner AJ, Hooper NM. ADAMs family members as amyloid precursor protein α-secretases. J Neurosci Res 2003;74:342–352.

    Article  PubMed  CAS  Google Scholar 

  55. Vincent B. ADAM proteases: protective role in Alzheimer's and prion diseases? Curr Alz Res 2004;1:165–174.

    Article  CAS  Google Scholar 

  56. Seals DF, Courtneidge SA. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 2003;17:7–30.

    Article  PubMed  CAS  Google Scholar 

  57. Lopez-Perez E, Zhang Y, Frank SLJ, et al. Constitutive α-secretase cleavage of the β-amyloid precursor protein in the furin-deficient LoVo cell line: involvement of the pro-hormone convertase 7 and the disintegrin ADAM10. J Neurochem 2001;76:1532–1539.

    Article  PubMed  CAS  Google Scholar 

  58. Hartmann D, De Strooper B, Serneels L, et al. The disintegrin/metalloprotease ADAM10 is essential for notch signalling but not for β-secretase activity in fibroblasts. Hum Mol Genet 2002;11:2615–2624.

    Article  PubMed  CAS  Google Scholar 

  59. Postina R, Schroeder A, Dewachter I, et al. Disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 2004;113:1456–1464.

    Article  PubMed  CAS  Google Scholar 

  60. Laffont-Proust I, Faucheux BA, Hässig R, et al. The N-terminal cleavage of cellular prion protein in the human brain. FEBS Lett 2005;579:6333–6337.

    Article  PubMed  CAS  Google Scholar 

  61. Hotoda N, Koike H, Sasagawa N, Ishiura S. A secreted form of human ADAM9 has an α-secretase activity for APP. Biochem Biophys Res Commun 2002;293:800–805.

    Article  PubMed  CAS  Google Scholar 

  62. Asai M, Hattori C, Szabo B, et al. Putative function of ADAM9, ADAM10, and ADAM17 as APP α-secretase. Biochem Biophys Res Commun 2003;301:231–235.

    Article  PubMed  CAS  Google Scholar 

  63. Roghani M, Becherer JD, Moss ML, et al. Metalloprotease-disintegrin MDC9: intracellular maturation and catalytic activity. J Biol Chem 1999;274:3531–3540.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Vincent, B., Cisse, M.A., Checler, F. (2008). Physiological Processing of the Cellular Prion Protein and βAPP: Enzymes and Regulation. In: Fisher, A., Memo, M., Stocchi, F., Hanin, I. (eds) Advances in Alzheimer’s and Parkinson’s Disease. Advances in Behavioral Biology, vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72076-0_32

Download citation

Publish with us

Policies and ethics