Skip to main content

Stem Cell Therapy in Alzheimer’s Disease

  • Conference paper
Advances in Alzheimer’s and Parkinson’s Disease

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 57))

  • 2066 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez-Buylla A, Kirn, Birth JR. migration, incorporation, and death of vocal control neurons in adult songbirds. J Neurobiol 1997;33(5):585–601.

    Article  PubMed  CAS  Google Scholar 

  2. Gould E, Reeves AJ, Fallah M, et al. Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci U S A 1999;96(9):5263–5267.

    Article  PubMed  CAS  Google Scholar 

  3. Rideout WM 3rd, Eggan K, Jaenisch R. Nuclear cloning and epigenetic reprogramming of the genome. Science 2001;293(5532):1093–1098.

    Article  PubMed  CAS  Google Scholar 

  4. Humpherys D, Eggan K, Akutsu H, et al. Epigenetic instability in ES cells and cloned mice. Science 2001;293(5527):95–97.

    Article  PubMed  CAS  Google Scholar 

  5. Majumdar MK, Thiede MA, Mosca JD, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998;176(1):57–66.

    Article  PubMed  CAS  Google Scholar 

  6. Pereira RF, Halford KW, O'Hara MD, et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci U S A 1995;92(11):4857–4861.

    Article  PubMed  CAS  Google Scholar 

  7. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;276(5309):71–74.

    Article  PubMed  CAS  Google Scholar 

  8. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143–147.

    Article  PubMed  CAS  Google Scholar 

  9. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998;279(5356):1528–1530.

    Article  PubMed  CAS  Google Scholar 

  10. Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999;103(5):697–705.

    PubMed  CAS  Google Scholar 

  11. Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells. Science 1999;284(5417):1168–1170.

    Article  PubMed  CAS  Google Scholar 

  12. Mackenzie TC, Flake AW. Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blood Cells Mol Dis 2001;27(3):601–604.

    Article  PubMed  CAS  Google Scholar 

  13. Imasawa T, Utsunamiya Y, Kawamura T, et al. The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J Am Soc Nephrol 2001;12(7):1401–1409.

    PubMed  CAS  Google Scholar 

  14. Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000;6(11):1282–1286.

    Article  PubMed  CAS  Google Scholar 

  15. Prockop DJ, Azizi SA, Phinney DG, et al. Potential use of marrow stromal cells as therapeutic vectors for diseases of the central nervous system. Prog Brain Res 2000;128:293–297.

    Article  PubMed  CAS  Google Scholar 

  16. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 2001;19(3):180–192.

    Article  PubMed  CAS  Google Scholar 

  17. Schwarz EJ, Alexander GM, Prockop DJ, Azizi SA. Multipotential marrow stromal cells transduced to produce L-dopa: engraftment in a rat model of Parkinson disease. Hum Gene Ther 1999;10(15):2539–2549.

    Article  PubMed  CAS  Google Scholar 

  18. Chopp M, Zhang XH, Li Y, et al. Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport 2000;11(13):3001–3005.

    Article  PubMed  CAS  Google Scholar 

  19. Chen J, Li Y, Chopp M. Intracerebral transplantation of bone marrow with BDNF after MCAo in rat. Neuropharmacology 2000;39(5):711–716.

    Article  PubMed  CAS  Google Scholar 

  20. Li Y, Chopp M, Chen J, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab 2000;20(9):1311–1319.

    Article  PubMed  CAS  Google Scholar 

  21. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 1999;96(19):10711–10716.

    Article  PubMed  CAS  Google Scholar 

  22. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418(6893):41–49.

    Article  PubMed  CAS  Google Scholar 

  23. Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002;416(6880):542–545.

    Article  PubMed  CAS  Google Scholar 

  24. Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature 2002;416(6880):545–548.

    Article  PubMed  CAS  Google Scholar 

  25. Wang SH, Tsai MS, Chang MF, Li H. A novel NK-type homeobox gene, ENK (early embryo specific NK), preferentially expressed in embryonic stem cells. Gene Exp Patterns 2003;3(1):99–103.

    Article  CAS  Google Scholar 

  26. Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003;113(5):643–655.

    Article  PubMed  CAS  Google Scholar 

  27. Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003;113(5):631–642.

    Article  PubMed  CAS  Google Scholar 

  28. Booth HA, Holland PW. Eleven daughters of NANOG. Genomics 2004;84(2):229–238.

    Article  PubMed  CAS  Google Scholar 

  29. Hart AH, Hartley L, Ibrahim M, Robb L. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev Dyn 2004;230(1):187–198.

    Article  PubMed  CAS  Google Scholar 

  30. Pan GJ, Pei DQ. Identification of two distinct transactivation domains in the pluripotency sustaining factor nanog. Cell Res 2003;13(6):499–502.

    Article  PubMed  CAS  Google Scholar 

  31. Richards M, Tan SP, Tan JH, et al. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 2004;22(1):51–64.

    Article  PubMed  CAS  Google Scholar 

  32. Sato N, Meijer L, Skaltsounis L, et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004;10(1):55–63.

    Article  PubMed  CAS  Google Scholar 

  33. Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2003;115(3):281–292.

    Article  PubMed  CAS  Google Scholar 

  34. LeBlanc A, Liu H, Goodyer C, et al. Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer's disease. J Biol Chem 1999;274(33):23426–23436.

    Article  PubMed  CAS  Google Scholar 

  35. Piccini A, Ciotti MT, Vitolo OV, et al. Endogenous APP derivatives oppositely modulate apoptosis through an autocrine loop. Neuroreport 2000;11(7):1375–1379.

    Article  PubMed  CAS  Google Scholar 

  36. Hugon J, Esclaire F, Lesort M, et al. Toxic neuronal apoptosis and modifications of tau and APP gene and protein expressions. Drug Metab Rev 1999;31(3):635–647.

    Article  PubMed  CAS  Google Scholar 

  37. Hung AY, Koo EH, Haass C, et al. Increased expression of beta-amyloid precursor protein during neuronal differentiation is not accompanied by secretory cleavage. Proc Natl Acad Sci U S A 1992;89(20):9439–9443.

    Article  PubMed  CAS  Google Scholar 

  38. Murakami N, Yamaki T, Iwamoto Y, et al. Experimental brain injury induces expression of amyloid precursor protein, which may be related to neuronal loss in the hippocampus. J Neurotrauma 1998;15(11):993–1003.

    PubMed  CAS  Google Scholar 

  39. Ishiguro M, Ohsawa I, Takamura C, et al. Secreted form of beta-amyloid precursor protein activates protein kinase C and phospholipase Cgamma1 in cultured embryonic rat neocortical cells. Brain Res Mol Brain Res 1998;53(1-2):24–32.

    Article  PubMed  CAS  Google Scholar 

  40. Ohsawa I, Takamura C, Kohsaka S. Fibulin-1 binds the amino-terminal head of beta-amyloid precursor protein and modulates its physiological function. J Neurochem 2001;76(5):1411–1420.

    Article  PubMed  CAS  Google Scholar 

  41. Greenberg SM, Koo EH, Selkoe DJ, et al. Secreted beta-amyloid precursor protein stimulates mitogen-activated protein kinase and enhances tau phosphorylation. Proc Natl Acad Sci U S A 1994;91(15):7104–7108.

    Article  PubMed  CAS  Google Scholar 

  42. Miyachi T, Asai K, Tsuiki H, et al. Interleukin-1beta induces the expression of lipocortin 1 mRNA in cultured rat cortical astrocytes. Neurosci Res 2001;40(1):53–60.

    Article  PubMed  CAS  Google Scholar 

  43. Brannen CL, Sugaya K. In vitro differentiation of multipotent human neural progenitors in serum-free medium. Neuroreport 2000;11(5):1123–1128.

    Article  PubMed  CAS  Google Scholar 

  44. Bahn S, Mimmack M, Ryan M, et al. Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down's syndrome: a gene expression study. Lancet 2002;359(9303):310–315.

    Article  PubMed  CAS  Google Scholar 

  45. Sawa A. Neuronal cell death in Down's syndrome. J Neural Transm Suppl 1999;57:87–97.

    PubMed  CAS  Google Scholar 

  46. Arai Y, Suzuki A, Mizuguchi M, et al. Developmental and aging changes in the expression of amyloid precursor protein in Down syndrome brains. Brain Dev 1997;19(4):290–294.

    Article  PubMed  CAS  Google Scholar 

  47. Bondolfi L, Calhoun M, Ermini F, et al. Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice. J Neurosci 2002;22(2):515–522.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Sugaya, K., Kwak, YD., Alvarez, A. (2008). Stem Cell Therapy in Alzheimer’s Disease. In: Fisher, A., Memo, M., Stocchi, F., Hanin, I. (eds) Advances in Alzheimer’s and Parkinson’s Disease. Advances in Behavioral Biology, vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72076-0_25

Download citation

Publish with us

Policies and ethics