Skip to main content

Glycosaminoglycans and Analogs in Neurodegenerative Disorders

  • Conference paper
Advances in Alzheimer’s and Parkinson’s Disease

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 57))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goedert M, Spillantini MG, Davies SW. Filamentous nerve cell inclusions in neurodegenerative diseases. Curr Opin Neurobiol 1998;8:619–632.

    Article  PubMed  CAS  Google Scholar 

  2. Kaytor MD, Warren ST. Aberrant protein deposition and neurological disease. J Biol Chem 1999;274:37507–37510.

    Article  PubMed  CAS  Google Scholar 

  3. Geula C, Wu CK, Saroff D, et al. Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat Med 1998;4:827–831.

    Article  PubMed  CAS  Google Scholar 

  4. Pérez M, Valpuesta JM, Medina M, et al. Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau–tau interaction. J Neurochem 1996;67:1183–1190.

    PubMed  Google Scholar 

  5. Prusiner SB. Prion diseases and the BSE crisis. Science 1997;278:245–251.

    Article  PubMed  CAS  Google Scholar 

  6. Thellung S, Florio T, Corsaro A, et al. Intracellular mechanisms mediating the neuronal death and astrogliosis induced by the prion protein fragment 106–126. Int J Dev Neurosci 2000;18:481–492.

    Article  PubMed  CAS  Google Scholar 

  7. Jortikka MO, Parkkinen JJ, Inkinen RI, et al. The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure. Arch Biochem Biophys 2000;374:172–180.

    Article  PubMed  CAS  Google Scholar 

  8. Goedert M, Crowther RA, Jakes R, et al. Filamentous tau protein and alpha-synuclein deposits in neurodegenerative diseases. In: Iqbal K, Swaab DF, Winblad B, Wisniewski HM (eds) Alzheimer's Disease and Related Disorders. Chichester, UK: Wiley, 1999, pp 245–258.

    Google Scholar 

  9. Park PW, Reizes O, Bernfield M. Cell surface heparan sulfate proteoglycans: selective regulators of ligand–receptor encounters. J Biol Chem 2000;275:29923–29926.

    Article  PubMed  CAS  Google Scholar 

  10. Maccarana M, Casu B, Lindahl U. Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J Biol Chem 1993;268:23898–23905.

    PubMed  CAS  Google Scholar 

  11. Lopez-Casillas F, Payne HM, Andres JL, Massague J. Betaglycan can act as a dual modulator of TGF-beta access to signalling receptors: mapping of ligand binding and GAG attachment sites. J Cell Biol 1994;124:557–568.

    Article  PubMed  CAS  Google Scholar 

  12. Tatebayashi Y, Iqbal K, Grundke-Iqbal I. Dynamic regulation of expression and phosphorylation of tau by fibroblast growth factor-2 in neural progenitor cells from adult rat hippocampus. J Neurosci 1999;19:5245–5254.

    PubMed  CAS  Google Scholar 

  13. artmann U, Maurer P. Proteoglycans in the nervous system–the quest for functional roles in vivo. Matrix Biol 2001;20:23–35.

    Article  Google Scholar 

  14. Gupta-Bansal R, Frederickson RC, Brunden KR. Proteoglycan-mediated inhibition of A beta proteolysis: a potential cause of senile plaque accumulation. J Biol Chem 1995;270:18666–18671.

    Article  PubMed  CAS  Google Scholar 

  15. Cardin AD, Weintraub HJ. Molecular modeling of protein–glycosaminoglycan interactions. Arteriosclerosis 1989;9:21–32.

    PubMed  CAS  Google Scholar 

  16. McLaurin J, Fraser PE. Effect of amino-acid substitutions on Alzheimer's amyloid-beta peptide–glycosaminoglycan interactions. Eur J Biochem 2000;267:6353–6361.

    Article  PubMed  CAS  Google Scholar 

  17. Velazquez P, Cribbs DH, Poulos TL, Tenner AJ. Aspartate residue 7 in amyloid beta protein is critical for classical complement pathway activation: implications for Alzheimer's disease pathogenesis. Nat Med 1997;3:77–79.

    Article  PubMed  CAS  Google Scholar 

  18. Bergamaschini L, Donarini C, Foddi C, et al. The region 1-11 of Alzheimer amyloid-β is critical for activation of contact-kinin system. Neurobiol Aging 2001;22;63–69.

    Article  PubMed  CAS  Google Scholar 

  19. Giulian D, Haverkamp LJ, Yu J, et al. The HHQK domain of beta-amyloid provides a structural basis for the immunopathology of Alzheimer's disease. J Biol Chem 1998;273;29719–29726.

    Article  PubMed  CAS  Google Scholar 

  20. Watson DJ, Lander AD, Selkoe DJ. Heparin-binding properties of the amyloidogenic peptides Abeta and amylin: dependence on aggregation state and inhibition by congo red. J Biol Chem 1997;272:31617–31624.

    Article  PubMed  CAS  Google Scholar 

  21. Fraser PE, Nguyen JT, Chin DT, Kirschner DA. Effects of sulfate ions on Alzheimer β/A4 peptide assemblies: implications for amyloid fibril-proteoglycan interactions. J Neurochem 1992;59:1531–1540.

    Article  PubMed  CAS  Google Scholar 

  22. Snow AD, Mar H, Nochlin D, et al. The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer's disease. Am J Pathol 1988;33:456–463.

    Google Scholar 

  23. De Witt DA, Silver J, Canning DR, Perry G. Chondroitin sulphate proteoglycans are associated with the lesions of Alzheimer's disease. Exp Neurol 1993;121:149–152.

    Article  Google Scholar 

  24. Woods AG, Cribbs DH, Whittemore ER, Cotman CW. Heparan sulfate and chondroitin sulfate glycosaminoglycan attenuate beta-amyloid (25–35) induced neurodegeneration in cultured hippocampal neurons. Brain Res 1995;697:53–62.

    Article  PubMed  CAS  Google Scholar 

  25. Pollack SJ, Sadler II, Hawtin SR, et al. Sulfonated dyes attenuate the toxic effects of beta-amyloid in a structure-specific fashion. Neurosci Lett 1995;197:211–214.

    Article  PubMed  CAS  Google Scholar 

  26. Nunomura APG, Pappolla MA, Friedland RP, et al. Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J Neuropathol Exp Neurol 2000; 59:1011–1017.

    PubMed  CAS  Google Scholar 

  27. Klein WL, Krafft GA, Finch CE. Targeting small A beta oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci 2001;24:219–224.

    Article  PubMed  CAS  Google Scholar 

  28. Brückner G, Hausen D, Härtig W, et al. Cortical areas abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by cytoskeletal changes in Alzheimer's disease. Neuroscience 1999;92:791–805.

    Article  PubMed  Google Scholar 

  29. Busciglio J, Lorenzo A, Yeh J, Yankner BA. β-Amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 1995;14:879–888.

    Article  PubMed  CAS  Google Scholar 

  30. Sturchler-Pierrat C, Abramowski D, Duke M, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 1997;94:13287–13292.

    Article  PubMed  CAS  Google Scholar 

  31. Yankner BA. Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 1996;16:921–932.

    Article  PubMed  CAS  Google Scholar 

  32. Small DH, Nurcombe V, Reed G, et al. A heparin-binding domain in the amyloid protein precursor of Alzheimer's disease is involved in the regulation of neurite outgrowth. J Neurosci 1994;14:2117–2127.

    PubMed  CAS  Google Scholar 

  33. Perry G, Kawai M, Tabaton M, et al. Neuropil threads of Alzheimer's disease show a marked alteration of the normal cytoskeleton. J Neurosci 1991;11:1748–1755.

    PubMed  CAS  Google Scholar 

  34. Arrasate M, Pérez M, Valpuesta JM, Avila J. Role of glycosaminoglycans in determining the helicity of paired helical filaments. Am J Pathol 1997;151:1115–1122.

    PubMed  CAS  Google Scholar 

  35. Arrasate M, Pérez M, Armas-Portela R, Avila J. Polymerization of tau peptides into fibrillar structures: the effect of FTDP-17 mutations. FEBS Lett 1999;446:199–202.

    Article  PubMed  CAS  Google Scholar 

  36. Forloni G, Angeretti N, Chiesa R, et al. Neurotoxicity of a prion protein fragment. Nature 1993;362:543–546.

    Article  PubMed  CAS  Google Scholar 

  37. Pérez M, Wandosell F, Colaço C, Avila J. Sulphated glycosaminoglycans prevent the neurotoxicity of a human prion protein fragment. Biochem J 1998;335:369–374.

    PubMed  Google Scholar 

  38. Gabizon R, Meiner Z, Halimi M, Ben-Sasson SA. Heparin-like molecules bind differentially to prion-proteins and change their intracellular metabolic fate. J Cell Physiol 1993;157:319–325.

    Article  PubMed  CAS  Google Scholar 

  39. Shyng SL, Lehmann S, Moulder KL, Harris DA. Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPc, in cultured cells. J Biol Chem 1995;270:30221–30229.

    Article  PubMed  CAS  Google Scholar 

  40. Wong C, Xiong LW, Horiuchi M, et al. Sulfated glycans and elevated temperature stimulate PrP(sc)-dependent cell-free formation of protease-resistant prion protein. EMBO J 2001;20:377–386.

    Article  PubMed  CAS  Google Scholar 

  41. Shaked GM, Meiner Z, Avraham I, et al. Reconstitution of prion infectivity from solubilized protease-resistant PrP and non-protein components of prion rods. J Biol Chem 2001;276:14324–14328.

    Article  PubMed  CAS  Google Scholar 

  42. Caughey B, Raymond GJ. Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol 1993;67:643–650.

    PubMed  CAS  Google Scholar 

  43. Kimberlin RH, Walker CA. Suppression of scrapie infection in mice by heteropolyanion 23, dextran sulfate, and some other polyanions. Antimicrob Agents Chemother 1986;30:409–413.

    PubMed  CAS  Google Scholar 

  44. Perry G, Richey P, Siedlak SL, et al. Basic fibroblast growth factor binds to filametous inclusions of neurodegenerative diseases. Brain Res 1992;579:350–352.

    Article  PubMed  CAS  Google Scholar 

  45. Cohlberg JA, Li J, Uversky VN, Fink AL. Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from alpha-synuclein in vitro. Biochemistry 2002;41:1502–1511.

    Article  PubMed  CAS  Google Scholar 

  46. Brunden KR, Richter-Cook NJ, Chaturvedi N, Frederickson RC. pH-dependent binding of synthetic beta-amyloid peptides to glycosaminoglycans. J Neurochem 1993; 61:2147–2154.

    Article  PubMed  CAS  Google Scholar 

  47. Buee L, Ding W, Anderson JP, et al. Binding of vascular heparan sulfate proteoglycan to Alzheimer's amyloid precursor protein is mediated in part by the N-terminal region of A4 peptide. Brain Res 1993;627:199–204.

    Article  PubMed  CAS  Google Scholar 

  48. Fraser PE, Darabie AA, McLaurin JA. Amyloid-beta interactions with chondroitin sulfate-derived monosaccharides and disaccharides: implications for drug development. J Biol Chem 2001;76:6412–6419.

    Article  Google Scholar 

  49. Leveugle B, Scanameo A, Ding W, Fillit H. Binding of heparan sulfate glycosaminoglycan to beta-amyloid peptide: inhibition by potentially therapeutic polysulfated compounds. Neuroreport 1994;5:1389–1392.

    PubMed  CAS  Google Scholar 

  50. McLaurin J., Franklin T, Zhang X, et al. Interactions of Alzheimer amyloid-beta peptides with glycosaminoglycans effects on fibril nucleation and growth. Eur J Biochem 1999;266:1101–1110.

    Article  PubMed  CAS  Google Scholar 

  51. Castillo GM, Ngo C, Cummings J, et al. Perlecan binds to the beta-amyloid proteins (A beta) of Alzheimer's disease, accelerates A beta fibril formation, and maintains A beta fibril stability. J Neurochem 1997;69:2452–2465.

    Article  PubMed  CAS  Google Scholar 

  52. McLaurin J, Franklin T, Kuhns WJ, Fraser PE. A sulfated proteoglycan aggregation factor mediates amyloid-beta peptide fibril formation and neurotoxicity. Amyloid 1999;6:233–243.

    PubMed  CAS  Google Scholar 

  53. Castillo GM, Lukito W, Wigh, TN, Snow AD. The sulfate moieties of glycosaminoglycans are critical for the enhancement of beta-amyloid protein fibril formation. J Neurochem 1999;72:1681–1687.

    Article  PubMed  CAS  Google Scholar 

  54. Fukuchi K, Hart M, Li L. Alzheimer's disease and heparan sulfate proteoglycan. Front Biosci 1998;3:d327–d337.

    PubMed  CAS  Google Scholar 

  55. Celio MR, Spreafico R, De Biasi S, Vitellaro-Zuccarello L. Perineuronal nets: past and present. Trends Neurosci 1998;21:510–515.

    Article  PubMed  CAS  Google Scholar 

  56. Härtig W, Klein C, Brauer K, et al. Hyperphosphorylated protein tau is restricted to neurons devoid of perineuronal nets in the cortex of aged bison. Neurobiol Aging 2001;22:25–33.

    Article  PubMed  Google Scholar 

  57. Pollack SJ, Sadler II, Hawtin SR, et al. Sulfated glycosaminoglycans and dyes attenuate the neurotoxic effects of beta-amyloid in rat PC12 cells. Neurosci Lett 1995a;184:113–116.

    Article  CAS  Google Scholar 

  58. Sadler II, Smith DW, Shearman MS, et al. Sulfated compounds attenuate beta-amyloid toxicity by inhibiting its association with cells. Neuroreport 1995;7:49–53.

    PubMed  CAS  Google Scholar 

  59. Snow AD, Sekiguchi R, Nochlin D, et al. An important role of heparan sulfate proteoglycan (Perlecan) in a model system for the deposition and persistence of fibrillar A beta-amyloid in rat brain. Neuron 1994;12:219–234.

    Article  PubMed  CAS  Google Scholar 

  60. Bergamaschini L, Donarini C, Rossi E, et al. Heparin attenuates cytotoxic and inflammatory activity of Alzheimer amyloid-beta in vitro. Neurobiol Aging 2002; 23:531–536.

    Article  PubMed  CAS  Google Scholar 

  61. Bergamaschini L, Rossi E., Storini C, et al. Peripheral treatment with enoxaparin, a low molecular weight heparin, reduces plaques and beta-amyloid accumulation in a mouse model of Alzheimer's disease. J Neurosci 2004;24:4181–4186.

    Article  PubMed  CAS  Google Scholar 

  62. Ban TA, Morey LC, Santini V. Clinical investigations with Ateroid in old-age dementias. Semin Thromb Hemost 1991;17:161–163.

    PubMed  Google Scholar 

  63. Conti L, Placidi GF, Cassano GB. Ateroid in the treatment of dementia: results of a clinical trial. In: Ban TA, Lehmann HE (eds) Diagnosis and Treatment of Old Age Dementias. Basel: Karger, 1989,pp 76–84.

    Google Scholar 

  64. Conti L, Re F, Lazzerini F, et al. Glycosaminoglycan polysulfate (Ateroid) in old-age dementias: effects upon depressive symptomatology in geriatric patients. Prog Neuropsychopharmacol Biol Psychiatry 1989;13:977–981.

    Article  PubMed  CAS  Google Scholar 

  65. Parnetti L, Ban TA, Senin U. Glycosaminoglycan polysulfate in primary degenerative dementia―pilot study of biologic and clinical effects. Neuropsychobiology 1995; 31:76–80.

    PubMed  CAS  Google Scholar 

  66. Cornelli U. The therapeutical approach to Alzheimer's disease. In: Casu JHAB (ed) Non-Anticoagulant Actions of Glycosaminoglycans (GAGs). New York: Plenum, 1996, pp 249–279.

    Google Scholar 

  67. Lorens SA, Guschwan M, Hata N, et al. Behavioral, endocrine, and neurochemical effects of sulfomucopolysaccharide treatment in the aged Fischer 344 male rat. Semin Thromb Hemost 1991;17:164–173.

    PubMed  Google Scholar 

  68. Ma Q, Dudas B, Hejna M, et al. The blood-brain barrier accessibility of a heparin-derived oligosaccharides C3. Thromb Res 2002;105:447–453.

    Article  PubMed  CAS  Google Scholar 

  69. Walzer M, Lorens S, Hejna M, et al. Low molecular weight glycosaminoglycan blockade of beta amyloid induced neuropathology. Eur J Pharmacol 2002;445:211–220.

    Article  PubMed  CAS  Google Scholar 

  70. Chambers CB, Sigurdsson EM, Hejna MJ, et al. Amyloid-beta injection in rat amygdala alters tau protein but not mRNA expression. Exp Neurol 2000;162:158–170.

    Article  PubMed  CAS  Google Scholar 

  71. Kowall NW, McKee AC, Yankner BA, Beal MF. In vivo neurotoxicity of beta-amyloid [beta(1–40)] and the beta(25–35) fragment. Neurobiol Aging 1992;13:537–542.

    Article  PubMed  CAS  Google Scholar 

  72. Sigurdsson EM, Lorens SA, Hejna MJ, et al. Local and distant histopathological effects of unilateral amyloid-beta 25–35 injections into the amygdala of young F344 rats. Neurobiol Aging 1996;17:893–901.

    Article  PubMed  CAS  Google Scholar 

  73. Sigurdsson EM, Lee JM, Dong XW, et al. Bilateral injections of amyloid-beta 25–35 into the amygdale of young Fischer rats: behavioral, neurochemical, and time dependent histopathological effects. Neurobiol Aging 1997;18:591–608.

    Article  PubMed  CAS  Google Scholar 

  74. Sigurdsson EM, Lee JM, Dong XW, et al. Laterality in the histological effects of injections of amyloid beta 25–35 into the amygdala of young Fischer rats. J Neuropathol Exp Neurol 1997;56:714–725.

    PubMed  CAS  Google Scholar 

  75. Takashima A, Honda T, Yasutake K, et al. Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide (25–35) enhances phosphorylation of tau in hippocampal neurons. Neurosci Res 1998;31:317–323.

    Article  PubMed  CAS  Google Scholar 

  76. Gotz J, Chen F, van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P301 tau transgenic mice induced by Abeta 42 fibrils. Science 2001;293:1491–1495.

    Article  PubMed  CAS  Google Scholar 

  77. Kisilevsky R, Lemieux LJ, Fraser PE, et al. Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer's disease. Nat Med 1995;1:143–148.

    Article  PubMed  CAS  Google Scholar 

  78. Damon DH, D'Amore PA, Wagner JA. Sulfated glycosaminoglycans modify growth factor-induced neurite outgrowth in PC12 cells. J Cell Physiol 1988;135:293–300.

    Article  PubMed  CAS  Google Scholar 

  79. Damon DH, Lobb RR, D'Amore PA, Wagner JA. Heparin potentiates the action of acidic fibroblast growth factor by prolonging its biological half-life. J Cell Physiol 1989;138:221–226.

    Article  PubMed  CAS  Google Scholar 

  80. Neufeld G, Gospodarowicz D, Dodge L, Fujii DK. Heparin modulation of the neurotropic effects of acidic and basic fibroblast growth factors and nerve growth factor on PC12 cells. J Cell Physiol 1987;131:131–140.

    Article  PubMed  CAS  Google Scholar 

  81. Walicke PA. Interactions between basic fibroblast growth factor (FGF) and glycosoaminoglycans in promoting neurite outgrowth. Exp Neurol 1988;102:144–148.

    Article  PubMed  CAS  Google Scholar 

  82. Zhou FY, Kan M, Owens RT, et al. Heparin-dependent fibroblast growth factor activities: effects of defined heparin oligosaccharides. Eur J Cell Biol 1997;73:71–80.

    PubMed  CAS  Google Scholar 

  83. Mervis RF, McKean J, Zats S, et al. Neurotrophic effects of the glycosaminoglycan C3 on dendritic arborization and spines in the adult rat hippocampus: a quantitative Golgi study. CNS Drug Rev 2000;6:44–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Parnetti, L., Cornelli, U. (2008). Glycosaminoglycans and Analogs in Neurodegenerative Disorders. In: Fisher, A., Memo, M., Stocchi, F., Hanin, I. (eds) Advances in Alzheimer’s and Parkinson’s Disease. Advances in Behavioral Biology, vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72076-0_23

Download citation

Publish with us

Policies and ethics