Cholesterol and Aβ Production: Methods for Analysis of Altered Cholesterol De Novo Synthesis

  • Jakob A. Tschäpe
  • Marcus O.W. Grimm
  • Heike S. Grimm
  • Tobias Hartmann
Part of the Advances in Behavioral Biology book series (ABBI, volume 57)


Lipid Raft Amyloid Precursor Protein Fabry Disease Sandhoff Disease Amyloid Precursor Protein Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001; 81:741–766.PubMedGoogle Scholar
  2. 2.
    Sisodia SS, St George-Hyslop PH. γ-Secretase, Notch, Aβ and Alzheimer's disease: where do the presenilins fit in? Nat Rev Neurosci 2002;3:281–290.PubMedCrossRefGoogle Scholar
  3. 3.
    Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992;256:184–185.PubMedCrossRefGoogle Scholar
  4. 4.
    Masters CL, Beyreuther KT. The pathology of the amyloid A4 precursor of Alzheimer's disease. Ann Med 19889;21:89–90.Google Scholar
  5. 5.
    De Strooper B, Annaert W. Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 2000;113(Pt 11):1857–1870.PubMedGoogle Scholar
  6. 6.
    Sinha S, Lieberburg I. Cellular mechanisms of beta-amyloid production and secretion. Proc Natl Acad Sci U S A 1999;96:11049–11053.PubMedCrossRefGoogle Scholar
  7. 7.
    Mahley RW, Rall SCJ. Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 2000;1:507–537.PubMedCrossRefGoogle Scholar
  8. 8.
    Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261:921–923.Google Scholar
  9. 9.
    Bales KR, Verina T, Dodel RC, et al. Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat Genet 1997;17:263–264.PubMedCrossRefGoogle Scholar
  10. 10.
    Nathan BP, Bellosta S, Aanan DA, et al. Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 1994;264:850–852.PubMedCrossRefGoogle Scholar
  11. 11.
    Tanzi RE. A genetic dichotomy model for the inheritance of Alzheimer's disease and common age-related disorders. J Clin Invest 1999;104:1175–1179.PubMedCrossRefGoogle Scholar
  12. 12.
    Younkin SG. Evidence that A beta 42 is the real culprit in Alzheimer's disease. Ann Neurol 1995;37:287–288.PubMedCrossRefGoogle Scholar
  13. 13.
    De Strooper B. Aph-1, Pen-2, and Nicastrin with presenilin generate an active gamma-secretase complex. Neuron 2003;38:9–12.PubMedCrossRefGoogle Scholar
  14. 14.
    Grziwa B, Grimm MO, Masters CL, et al. The transmembrane domain of the amyloid precursor protein in microsomal membranes is on both sides shorter than predicted. J Biol Chem 2003;278:6803–6808.PubMedCrossRefGoogle Scholar
  15. 15.
    Casserly I, Topol E. Convergence of atherosclerosis and Alzheimer's disease: inflammation, cholesterol, and misfolded proteins. Lancet 2004;363:1139–1146.PubMedCrossRefGoogle Scholar
  16. 16.
    Puglielli L, Tanzi RE, Kovacs DM. Alzheimer's disease: the cholesterol connection. Nat Neurosci 2003;6:345–351.PubMedCrossRefGoogle Scholar
  17. 17.
    Simons K, Ehehalt R. Cholesterol, lipid rafts, and disease. J Clin Invest 2002;110:597–603.PubMedCrossRefGoogle Scholar
  18. 18.
    Hartmann T. Cholesterol, Abeta and Alzheimer's disease. TINS 2001;24:45–48.Google Scholar
  19. 19.
    Simons M, Keller P, De Strooper B, et al. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci U S A 1998;95:6460–6464.PubMedCrossRefGoogle Scholar
  20. 20.
    Mizuno T, Nakata M, Naiki H, et al. Cholesterol-dependent generation of a seeding amyloid beta-protein in cell culture. J Biol Chem 1999;274:15110–15114.PubMedCrossRefGoogle Scholar
  21. 21.
    Wahrle S, Das P, Nyborg AC, et al. Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol Dis 2002;9:11–23.PubMedCrossRefGoogle Scholar
  22. 22.
    Fassbender K, Simons M, Bergmann C, et al. Simvastatin strongly reduces levels of Alzheimer's disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A 2001;98:5856–5861.PubMedCrossRefGoogle Scholar
  23. 23.
    Burns M, Gaynor K, Olm V, et al. Presenilin redistribution associated with aberrant cholesterol transport enhances beta-amyloid production in vivo. J Neurosci 2003;23:5645–5649.PubMedGoogle Scholar
  24. 24.
    Runz H, Rietdorf J, Tomic I, et al. Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J Neurosci 2002;22:1679–1689.PubMedGoogle Scholar
  25. 25.
    Tschäpe JA, Hammerschmied C, Mühlig-Versen M, et al. The neurodegeneration mutant lochrig interferes with cholesterol homeostasis and Appl processing. EMBO J 21:6367–6376.Google Scholar
  26. 26.
    Yamazaki T, Chang TY, Haass C, Ihara Y. Accumulation and aggregation of amyloid beta-protein in late endosomes of Niemann-pick type C cells. J Biol Chem 2001;276:4454–4460.PubMedCrossRefGoogle Scholar
  27. 27.
    Kojro E, Gimpl G, Lammich S, et al. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc Natl Acad Sci USA 2001;98:5815–5820.PubMedCrossRefGoogle Scholar
  28. 28.
    Shie FS, Jin LW, Cook DG, et al. Diet-induced hypercholesterolemia enhances brain A beta accumulation in transgenic mice. Neuroreport 2002;13:455–459.PubMedCrossRefGoogle Scholar
  29. 29.
    Refolo LM, Malester B, LaFrancois J, et al. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol Dis 2000;7:321–331.PubMedCrossRefGoogle Scholar
  30. 30.
    Refolo LM, Pappolla MA, LoFrancois J, et al. A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2001;8:890–899.PubMedCrossRefGoogle Scholar
  31. 31.
    Kivipelto M, Helkala EL, Laakso MP, et al. Midlife vascular risk factors and Alzheimer's disease in later life: longitudinal, population based study. BMJ 2001;322:1447–1451.PubMedCrossRefGoogle Scholar
  32. 32.
    Pappolla MA, Bryant-Thomas TK, Herbert D, et al. Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology 2003;61:199–205.PubMedGoogle Scholar
  33. 33.
    Rockwood K, Kirkland S, Hogan DB, et al. Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol 2002;59:223–227.PubMedCrossRefGoogle Scholar
  34. 34.
    Buxbaum JD, Cullen EI, Friedhoff LT. Pharmacological concentrations of the HMG-CoA reductase inhibitor lovastatin decrease the formation of the Alzheimer beta-amyloid peptide in vitro and in patients. Front Biosci 2002;7:a50–a59.PubMedCrossRefGoogle Scholar
  35. 35.
    Simons M, Schwärzler F, Lütjohann D, et al. Treatment with simvastatin in normocholesterolemic patients with Alzheimer's disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann Neurol 2002;52:346–350.PubMedCrossRefGoogle Scholar
  36. 36.
    Jick H, Zornberg GL, Jick SS, et al. Statins and the risk of dementia. Lancet 2000;356:1627–1631.PubMedCrossRefGoogle Scholar
  37. 37.
    Wolozin B, Kellman W, Ruosseau P, et al. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 2000;57:1439–1443.PubMedCrossRefGoogle Scholar
  38. 38.
    Sabbagh M, et al. Benefits of atorvastatin in subjects with Alzheimer's disease. Arch Neurol (in press).Google Scholar
  39. 39.
    Strittmatter WJ, Roses AD. Apolipoprotein E and Alzheimer disease. Proc Natl Acad Sci U S A 1995;92:4725–4727.PubMedCrossRefGoogle Scholar
  40. 40.
    Cutler RG, Kelly J, Storie K, et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc Natl Acad Sci U S A 2004;101:2070–2075.PubMedCrossRefGoogle Scholar
  41. 41.
    Wood WG, Schroeder F, Igbavboa U, et al. Brain membrane cholesterol domains, aging and amyloid beta-peptides. Neurobiol Aging 2002;23:685–694.PubMedCrossRefGoogle Scholar
  42. 42.
    Zha Q, Ruan Y, Hartmann T, et al. GM1 ganglioside regulates the proteolysis of amyloid precursor protein. Mol Psychiatry 2004;9:946–952.PubMedCrossRefGoogle Scholar
  43. 43.
    Puglielli L, Konopka G, Pack-Chung E, et al. Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol 2001;3:905–912.PubMedCrossRefGoogle Scholar
  44. 44.
    Sawamura N, Ko M, Yu W, et al. Modulation of amyloid precursor protein cleavage by cellular sphingolipids. J Biol Chem 2004;279:11984–11991.PubMedCrossRefGoogle Scholar
  45. 45.
    Sparks DL, Scheff SW, Hunsaker JC 3rd, et al. Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 1994;126:88–94.PubMedCrossRefGoogle Scholar
  46. 46.
    Simons K, Vaz WL. Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 2004;33:269–295.PubMedCrossRefGoogle Scholar
  47. 47.
    Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000;1:31–39.PubMedCrossRefGoogle Scholar
  48. 48.
    Simons K, Ikonen E. How cells handle cholesterol. Science 2000;290:1721–1726.PubMedCrossRefGoogle Scholar
  49. 49.
    Hakomori S, Handa K. Glycosphingolipid-dependent cross-talk between glycosynapses interfacing tumor cells with their host cells: essential basis to define tumor malignancy. FEBS Lett 2002;531:88–92.PubMedCrossRefGoogle Scholar
  50. 50.
    Vetrivel KS, Cheng H, Lin W, et al. Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes. J Biol Chem 2004;279:44945–44954.PubMedCrossRefGoogle Scholar
  51. 51.
    Cordy JM, Hussain I, Dingwall C, et al. Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 2003;100:11735–11740.PubMedCrossRefGoogle Scholar
  52. 52.
    Marlow L, Cain M, Pappolla MA, Sambamurti K. Beta-secretase processing of the Alzheimer's amyloid protein precursor (APP). J Mol Neurosci 2003;20:233–239.PubMedCrossRefGoogle Scholar
  53. 53.
    Ehehalt R, Keller P, Haass C, et al. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 2003;160:113–123.PubMedCrossRefGoogle Scholar
  54. 54.
    Riddell DR, Christie G, Hussain I, Dingwall C. Compartmentalization of beta-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr Biol 2001;11:1288–1293.PubMedCrossRefGoogle Scholar
  55. 55.
    Parkin ET, Turner AJ, Hooper NM. Amyloid precursor protein, although partially detergent-insoluble in mouse cerebral cortex, behaves as an atypical lipid raft protein. Biochem 1999;J 344(Pt 1):23–30.CrossRefGoogle Scholar
  56. 56.
    Lee SJ, Liyanage U, Bickel PE, et al. A detergent-insoluble membrane compartment contains A beta in vivo. Nat Med 1998;4:730–734.PubMedCrossRefGoogle Scholar
  57. 57.
    Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Med Sci 1959;37:911–917.Google Scholar
  58. 58.
    Hundrieser KE, Clark RM, Jensen RG. Total phospholipid analysis in human milk without acid digestion. Am J Clin Nutr 1985;41:988–993.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jakob A. Tschäpe
    • 1
  • Marcus O.W. Grimm
  • Heike S. Grimm
  • Tobias Hartmann
  1. 1.Center for Molecular Biology Heidelberg (ZMBH)University of HeidelbergGermany

Personalised recommendations