Advertisement

Alzheimer’s Disease, Parkinson’s Disease, and Frontotemporal Dementias: Different Manifestations of Protein Misfolding

  • John Q. Trojanowski
  • Mark S. Forman
  • Virginia M-Y. Lee
Part of the Advances in Behavioral Biology book series (ABBI, volume 57)

Keywords

Multiple System Atrophy Frontotemporal Dementia Parkinsonian Disorder Drug Discovery Effort Nigrostriatal Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dobson CM. Protein folding and misfolding. Nature 2003;426:884–890PubMedCrossRefGoogle Scholar
  2. 2.
    Forman MS, Trojanowski JQ, Lee VM-Y. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 2004;10:1055–1063PubMedCrossRefGoogle Scholar
  3. 3.
    Selkoe DJ. Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases. Nat Cell Biol 2004;6:1054–1061PubMedCrossRefGoogle Scholar
  4. 4.
    Skovronsky DM., Lee VM-Y, Trojanowski, JQ. Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu Rev Pathol Mech Dis 2005;1:151–170CrossRefGoogle Scholar
  5. 5.
    Cookson MR. The biochemistry of Parkinson's disease. Annu Rev Biochem 2005;74:29–52PubMedCrossRefGoogle Scholar
  6. 6.
    Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson's disease. Science 2003;302:819–822PubMedCrossRefGoogle Scholar
  7. 7.
    Feany MB. New genetic insights into Parkinson's disease. N Engl J Med 2004;351:1937–1940PubMedCrossRefGoogle Scholar
  8. 8.
    Forman MS, Lee VM-Y, Trojanowski JQ. Nosology of Parkinson’s disease: looking for the way out of a quackmire. Neuron 2005;47:479–482PubMedCrossRefGoogle Scholar
  9. 9.
    Greenamyre JT, Hastings TG. Parkinson's: divergent causes, convergent mechanisms. Science 2004;304:1120–1122PubMedCrossRefGoogle Scholar
  10. 10.
    Lee VM-Y, Daughenbaugh R, Trojanowski JQ. Microtubule stabilizing drugs for the treatment of Alzheimer's disease. Neurobiol Aging 1994;15:S87–S89PubMedCrossRefGoogle Scholar
  11. 11.
    Clark LN, Poorkaj P, Wszolek Z, et al. Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurogenerative disorders linked to chromosome 17. Proc Natl Acad Sci U S A 1998;95:13103–13107PubMedCrossRefGoogle Scholar
  12. 12.
    Hutton M, Lendon CL, Rizzu P, et al. Association of missense and 5’-splice-site-mutations in tau with the inherited dementia FTDP-17. Nature 1998;393:702–705PubMedCrossRefGoogle Scholar
  13. 13.
    Poorkaj P, Bird TE, Wijsman E, et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 1998;43:815–825PubMedCrossRefGoogle Scholar
  14. 14.
    Spillantini MG, Murrell TR, Goedert M, et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA 1998;95:7737–7741PubMedCrossRefGoogle Scholar
  15. 15.
    Forman MS, Lee VM-Y, Trojanowski JQ. Hereditary tauopathies and idiopathic frontotemporal dementias. In: Esiri M, Lee VM-Y, Trojanowski JQ (eds) The Neuropathology of Dementia, 2nd ed. Cambridge University Press, Cambridge, UK, 2004, pp 257–288Google Scholar
  16. 16.
    Hong M, Zhukareva V, Vogelsberg-Ragaglia V, et al. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 1998;282:1914–1917PubMedCrossRefGoogle Scholar
  17. 17.
    Lee VM-Y, Kenyon TK, Trojanowski JQ. Transgenic animal models of tauopathies. Biochim Biophys Acta 2005;1739:251–259PubMedGoogle Scholar
  18. 18.
    Fillit HM, Refolo LM. Advancing drug discovery for Alzheimer’s disease. Curr Alzheimer Res 2005;2:105–109PubMedCrossRefGoogle Scholar
  19. 19.
    McKhann GM, Albert MS, Grossman M, et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol 2001;58:1803–1809PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang B, Maiti A, Shively S, et al. Microtubule binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a murine neurodegenerative tauopathy model. Proc Natl Acad Sci U S A 2005;102:227–231PubMedCrossRefGoogle Scholar
  21. 21.
    Michaelis ML, Ansar S, Chen Y, et al. Beta-amyloid-induced neurodegeneration and protection by structurally diverse microtubule-stabilizing agents. J Pharmacol Exp Ther 2005;312:659–668PubMedCrossRefGoogle Scholar
  22. 22.
    Rice A, Liu Y, Michaelis ML, et al. Chemical modification of paclitaxel (Taxol) reduces P-glycoprotein interactions and increases permeation across the blood-brain barrier in vitro and in situ. J Med Chem 2005;48:832–838PubMedCrossRefGoogle Scholar
  23. 23.
    Dickey CA, Eriksen J, Kamal A, et al. Development of a high throughput drug screening assay for the detection of changes in tau levels: proof of concept with HSP90 inhibitors. Curr Alzheimer Res 2005;2:231–239PubMedCrossRefGoogle Scholar
  24. 24.
    Pickhardt M, Gazova Z, von Bergen M, et al. Anthraquinones inhibit tau aggregation and dissolve Alzheimer's paired helical filaments in vitro and in cells. J Biol Chem 2005;280:3628–3635PubMedCrossRefGoogle Scholar
  25. 25.
    Pickhardt M, von Bergen M, Gazova Z, et al. Screening for inhibitors of tau polymerization. Curr Alzheimer Res 2005;2:219–226PubMedCrossRefGoogle Scholar
  26. 26.
    Noble W, Planel E, Zehr C, et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA 2005;102:6990–6995PubMedCrossRefGoogle Scholar
  27. 27.
    Phiel CJ, Wilson CA, Lee VM-Y, Klein PS. GSK-3 alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature 2003;423:435–439PubMedCrossRefGoogle Scholar
  28. 28.
    Giasson BI, Lee VM-Y, Trojanowski JQ. Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy and the spectrum of diseases with alpha-synuclein inclusions. In: Esiri M, Lee VM-Y, Trojanowski JQ (eds) The Neuropathology of Dementia, 2nd ed. Cambridge University Press, Cambridge, UK, 2004, pp 353–375Google Scholar
  29. 29.
    Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 1997;276:2045–2047PubMedCrossRefGoogle Scholar
  30. 30.
    Spillantini MG, Schmidt ML, Lee VM-Y, et al. Alpha-synuclein in Lewy bodies. Nature 1997;388:839–840PubMedCrossRefGoogle Scholar
  31. 31.
    Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet 1998;18:106–108PubMedCrossRefGoogle Scholar
  32. 32.
    Singleton AB, Farrer M, Johnson J, et al. Alpha-synuclein locus triplication causes Parkinson's disease. Science 2003;302:841PubMedCrossRefGoogle Scholar
  33. 33.
    Zarranz JJ, Alegre J, Gomez-Esteban JC, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004;55:164–173PubMedCrossRefGoogle Scholar
  34. 34.
    Lansbury PT Jr. Back to the future: the 'old-fashioned' way to new medications for neurodegeneration. Nat Med 2004;10(suppl):S51–S57PubMedCrossRefGoogle Scholar
  35. 35.
    Li J, Zhu M, Rajamani S, et al. Rifampicin inhibits alpha-synuclein fibrillation and disaggregates fibrils. Chem Biol 2004;11:1513–1521PubMedCrossRefGoogle Scholar
  36. 36.
    Zhu M, Rajamani S, Kaylor J, et al. The flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils. J Biol Chem 2004;279:26846–26857PubMedCrossRefGoogle Scholar
  37. 37.
    Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998;392:605–608PubMedCrossRefGoogle Scholar
  38. 38.
    Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003;299:256–259PubMedCrossRefGoogle Scholar
  39. 39.
    Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004;304:1158–1160PubMedCrossRefGoogle Scholar
  40. 40.
    Paisan-Ruiz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 2004;44:595–600PubMedCrossRefGoogle Scholar
  41. 41.
    Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004;44:601–607PubMedCrossRefGoogle Scholar
  42. 42.
    Giasson BI, Forman MS, Higuchi M, et al. Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 2003;300:636–640PubMedCrossRefGoogle Scholar
  43. 43.
    Aharon-Peretz J, Rosenbaum H, Gershoni-Baruch R. Mutations in the glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. N Engl J Med 2004;351:1972–1977PubMedCrossRefGoogle Scholar
  44. 44.
    Lwin A, Orvisky E, Goker-Alpan O, et al. Glucocerebrosidase mutations in subjects with parkinsonism. Mol Genet Metab 2004;81:70–73, 2004PubMedCrossRefGoogle Scholar
  45. 45.
    Welch K, Yuan J. Alpha-synuclein oligomerization: a role for lipids? Trends Neurosci 2003;26:517–519, 2003.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • John Q. Trojanowski
    • 1
  • Mark S. Forman
  • Virginia M-Y. Lee
  1. 1.The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory MedicineInstitute on Aging, The University of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations