Neuroinflammation in Early Stages of Alzheimer’s Disease and Parkinson’s Disease

  • Piet Eikelenboom
  • A. Crosswell
  • C. van Engen
  • M. Limper
  • J.J.M. Hoozemans
  • R. Veerhuis
  • W.A. van Gool
  • J.M. Rozemuller
Conference paper
Part of the Advances in Behavioral Biology book series (ABBI, volume 57)


Substantia Nigra Prion Disease Cerebral Amyloid Angiopathy Neuroinflammatory Response Neurobiol Aging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eikelenboom P, Bate C, van Gool WA, et al. Neuroinflammation in Alzheimer's disease and prion disease. Glia 2002;40:232–239PubMedCrossRefGoogle Scholar
  2. 2.
    Veerhuis R, Boshuizen RS, Familian A. Amyloid associated proteins in Alzheimer's and prion disease. Curr Drug Targets CNS Neurol Disord 2005;4:235-248PubMedCrossRefGoogle Scholar
  3. 3.
    Rogers J, Cooper NR, Webster S, et al. Complement activation by β-amyloid in Alzheimer's disease. Proc Natl Acad Sci U S A 1992;89:10061–10020Google Scholar
  4. 4.
    Streit WJ. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002;40:133–139PubMedCrossRefGoogle Scholar
  5. 5.
    Hanisch U-K. Microglia as a source and target of cytokines. Glia 2002;40:140–155PubMedCrossRefGoogle Scholar
  6. 6.
    Eikelenboom P, Veerhuis R. The role of complement activation and microglia in the pathogenesis of Alzheimer's disease. Neurobiol Aging 1996;17:673–680PubMedCrossRefGoogle Scholar
  7. 7.
    Rozemuller JM, van Gool WA, Eikelenboom P. The neuroinflammatory response in plaque and amyloid angiopathy. Curr Drug Targets CNS Neurol Disord 2005;4:223–233PubMedCrossRefGoogle Scholar
  8. 8.
    Benzing WC, Wujek JR, Ward EK, et al. Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol Aging 1999;20:581–589PubMedCrossRefGoogle Scholar
  9. 9.
    Matsuaka Y, Picciano M, Malester B, et al. Inflammatory responses to amyloidosis in a transgenic mouse model for Alzheimer's disease. Am J Pathol 2001;158:1345–1354Google Scholar
  10. 10.
    Miao J, Xu F, Davis J, et al. Cerebral microvascular amyloid-β protein deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant amyloid-β precursor protein. Am J Pathol 2005;167:505–515PubMedGoogle Scholar
  11. 11.
    Arends YM, Duyckaerts C, Rozemuller JM, et al. Microglia, amyloid and dementia in Alzheimer's disease: a correlative study. Neurobiol Aging 2000;21:39–47PubMedCrossRefGoogle Scholar
  12. 12.
    Vehmas AK, Kawas CH, Stewart WF, Troncosco JC. Immunoreactive cells and cognitive decline in Alzheimer's disease. Neurobiol Aging 2003;24:321–331PubMedCrossRefGoogle Scholar
  13. 13.
    Cagnin DJ, Brooks AM, Kennedy RN, et al. In-vivo measurement of microglia in dementia. Lancet 2001;358:461–467PubMedCrossRefGoogle Scholar
  14. 14.
    Williams AE, van Dam AM, Ritchie D, et al. Immunohistochemical appearance of cytokines, prostaglandin E2, and lipocortin-1 in the CNS during the incubation period of murine scrapie correlates with progressive PrP accumulations. Brain Res 1997;754:171–180PubMedCrossRefGoogle Scholar
  15. 15.
    Fischer O. Miliare Nekrosen mit drusigen Wucherungen der Neurofibrillen, eine regelmässige Veränderung der Hirnrinde bei seniler Demenz. Monatsch Psychiatr Neurol 1907;22:361–372Google Scholar
  16. 16.
    Bouman L. Senile plaques. Brain 1934;57:128–142CrossRefGoogle Scholar
  17. 17.
    Zhan SS, Kamphorst W, VanNostrand WE, Eikelenboom P. Distribution of neuronal growth-promoting factors and cytoskeletal proteins in altered neurites and non-demented elderly. Acta Neuropathol (Berl) 1995;89:365–372CrossRefGoogle Scholar
  18. 18.
    Breen KC. APP-collagen interaction is mediated by a heparin bridge mechanism. Mol Chem Neuropathol 1992;16:109–121PubMedCrossRefGoogle Scholar
  19. 19.
    Koo EH, Park L, Selkoe DJ. Amyloid-β protein as substrate interacts with extracellular matrix to promote neurite outgrowth. Proc Natl Acad Sci U S A 1994;90:1564–1568Google Scholar
  20. 20.
    Veerhuis R, van Breemen MJ, Hoozemans JJM, et al. Amyloid β-associated proteins C1q and SAP enhance the Aβ1-42 peptide-induced cytokine secretion by adult human microglia in vitro. Acta Neuropathol (Berl) 2003;105:135–144Google Scholar
  21. 21.
    Hoozemans JJM, Bruckner MK, Rozemuller AJM, et al. Cyclin D1 and cyclin E are colocalized with cyclo-oxygenase 2 (COX-2) in pyramidal neurons in Alzheimer disease temporal cortex. J Neuropathol Exp Neurol 2002;61:678–688PubMedGoogle Scholar
  22. 22.
    Hoozemans JJM, Veerhuis R, Arendt T, Eikelenboom P. Neuronal COX-2 expression and phosphorylation of pRb precede p38 MAPK activation and neurofibrillar changes in AD temporal cortex. Neurobiol Dis 2004;15:492–499PubMedCrossRefGoogle Scholar
  23. 23.
    Blalock EM, Geddes JW, Chen KC, et al. Inciepient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A 2004;101:2173–2178PubMedCrossRefGoogle Scholar
  24. 24.
    Eikelenboom P, Zhan SS, van Gool WA, Allsop D. Inflammatory mechanisms in Alzheimer's disease. Trends Pharmacol Sci 1994;15:447–450PubMedCrossRefGoogle Scholar
  25. 25.
    Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease: a double-edged sword. Neuron 2002;35:419–432PubMedCrossRefGoogle Scholar
  26. 26.
    Brendza RP, Bacskai BJ, Cirrito JR, et al. Anti-Aβ antibody treatment promotes the rapid recovery of amyloid-associated neuritic dystrophy in PDAPP transgenic mice. J Clin Invest 2005;115:428–433PubMedCrossRefGoogle Scholar
  27. 27.
    Nicoll JAR, Wilkinson D, Holmes C, et al. Neuropathology of human Alzheimer's disease after immunization with amyloid-β peptide; a case report. Nat Med 2003;9:448–452PubMedCrossRefGoogle Scholar
  28. 28.
    McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 1988;38:1285–1291PubMedGoogle Scholar
  29. 29.
    Wilms H, Rosenstiel P, Sievers J, et al. Activation of microglia by human neuromelanin is NF-κB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson's disease. FASEB J 2003;17:500–502PubMedGoogle Scholar
  30. 30.
    Hirsch EC, Hunot S, Hartmann A. Neuroinflammatory processes in Parkinson's disease. Parkinsonism Relat Dis 2005;11:S1–S9CrossRefGoogle Scholar
  31. 31.
    Gao HM, Jiang J, Wilson B, et al. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J Neurochem 2002;81:1285–1297PubMedCrossRefGoogle Scholar
  32. 32.
    Lawson L, Perry VH, Dri P, Gordon G. Heterogeneity in the distribution and morphology of microglia in the mouse brain. Neuroscience 1990;39:151–170PubMedCrossRefGoogle Scholar
  33. 33.
    Del Tredici K, Rüb U, de Vos RAI, et al. Where does Parkinson's disease begin in the brain? J Neuropathol Exp Neurol 2002;61:413–426PubMedGoogle Scholar
  34. 34.
    Braak H, Del Tredici K, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 2003;24:197–211PubMedCrossRefGoogle Scholar
  35. 35.
    Metchinikoff E. Leçons sur la Pathologie Comparée de l'Inflammation. Masson, Paris, 1892.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Piet Eikelenboom
    • 1
  • A. Crosswell
  • C. van Engen
  • M. Limper
  • J.J.M. Hoozemans
  • R. Veerhuis
  • W.A. van Gool
  • J.M. Rozemuller
  1. 1.Department of Neurology, Academic Medical Center, The Netherlands and Department of PsychiatryUniversity of Amsterdam, Vrije Universiteit Medical Center

Personalised recommendations