(Super)paramagnetic Nanoparticles: Applications in Noninvasive MR Imaging of Stem Cell Transfer

  • Glenn A. Walter
  • Swadeshmukul Santra
  • Bijoy Thattaliyath
  • Samuel C. Grant
Part of the Fundamental Biomedical Technologies book series (FBMT, volume 102)


Common techniques to monitor muscle stem cell transplants typically rely on ex vivo genetic modification to allow expression of reporter genes. Specific reporter genes allow for graft identification during post-mortem analysis. The use of these invasive techniques makes even simple and practical questions difficult and labor intensive to answer. The design and improvement of the stem cell-based therapies will be greatly facilitated by the development of sensitive, noninvasive, and nondestructive techniques for tracking stem cells following implantation or infusion. MR offers such an opportunity, due to its ability to obtain high-resolution 3D images repeatedly and noninasively. Reliable tracking by MR imaging can be achieved by labeling cells with (super)paramagnetic nanoparticles. In this chapter, we discuss recent advances in the development and applications of (super)paramagnetic nanoparticles for in vivo cell tracking and targeting.


Stem Cell Contrast Agent Magn Reson Image Superparamagnetic Iron Oxide Chemical Exchange Saturation Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghi, M., Chiocca, E.A., 2005. Contribution of bone marrow-derived cells to blood vessels in ischemic tissues and tumors. Mol Ther 12, 994–1005.PubMedCrossRefGoogle Scholar
  2. Ahrens, E.T., Feili-Hariri, M., Xu, H., Genove, G., Morel, P.A., 2003. Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn Reson Med 49, 1006–1013.PubMedCrossRefGoogle Scholar
  3. Aime, S., Barge, A., Delli Castelli, D., Fedeli, F., Mortillaro, A., Nielsen, F.U., Terreno, E., 2002a. Paramagnetic lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med 47, 639–648.CrossRefGoogle Scholar
  4. Aime, S., Calabi, L., Biondi, L., De Miranda, M., Ghelli, S., Paleari, L., Rebaudengo, C., Terreno, E., 2005a. Iopamidol: Exploring the potential use of a well-established x-ray contrast agent for MRI. Magn Reson Med 53, 830–834.CrossRefGoogle Scholar
  5. Aime, S., Delli Castelli, D., Fedeli, F., Terreno, E., 2002b. A paramagnetic MRI-CEST agent responsive to lactate concentration. J Am Chem Soc 124, 9364–9365.CrossRefGoogle Scholar
  6. Aime, S., Delli Castelli, D., Terreno, E., 2005b. Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. Angew Chem Int Ed Engl 44, 5513–5515.CrossRefGoogle Scholar
  7. Alivisatos, A.P., 1996. Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100, 13226–13239.CrossRefGoogle Scholar
  8. Allen, M.J., MacRenaris, K.W., Venkatasubramanian, P.N., Meade, T.J., 2004. Cellular delivery of MRI contrast agents. Chem Biol 11, 301–307.PubMedCrossRefGoogle Scholar
  9. Allport, J.R., Weissleder, R., 2001. In vivo imaging of gene and cell therapies. Exp Hematol 29, 1237–1246.PubMedCrossRefGoogle Scholar
  10. Alvarez-Buylla, A., Herrera, D.G., Wichterle, H., 2000. The subventricular zone: source of neuronal precursors for brain repair. Prog Brain Res 127, 1–11.PubMedGoogle Scholar
  11. Anderson, S.A., Glod, J., Arbab, A.S., Noel, M., Ashari, P., Fine, H.A., Frank, J.A., 2005. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 105, 420–425.PubMedCrossRefGoogle Scholar
  12. Anderson, S.A., Lee, K.K., Frank, J.A., 2006. Gadolinium-fullerenol as a paramagnetic contrast agent for cellular imaging. Invest Radiol 41, 332–338.PubMedCrossRefGoogle Scholar
  13. Anversa, P., Kajstura, J., Leri, A., Bolli, R., 2006. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113, 1451–1463.PubMedCrossRefGoogle Scholar
  14. Aoki, I., Takahashi, Y., Chuang, K.H., Silva, A.C., Igarashi, T., Tanaka, C., Childs, R.W., Koretsky, A.P., 2006. Cell labeling for magnetic resonance imaging with the T1 agent manganese chloride. NMR Biomed 19, 50–59.PubMedCrossRefGoogle Scholar
  15. Arai, T., Kofidis, T., Bulte, J.W., de Bruin, J., Venook, R.D., Berry, G.J., McConnell, M.V., Quertermous, T., Robbins, R.C., Yang, P.C., 2006. Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 t. Magn Reson Med 55, 203–209.PubMedCrossRefGoogle Scholar
  16. Arbab, A.S., Bashaw, L.A., Miller, B.R., Jordan, E.K., Bulte, J.W., Frank, J.A., 2003. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation 76, 1123–1130.PubMedCrossRefGoogle Scholar
  17. Arbab, A.S., Liu, W., Frank, J.A., 2006a. Cellular magnetic resonance imaging: current status and future prospects. Expert Rev Med Devices 3, 427–439.CrossRefGoogle Scholar
  18. Arbab, A.S., Pandit, S.D., Anderson, S.A., Yocum, G.T., Bur, M., Frenkel, V., Khuu, H.M., Read, E.J., Frank, J.A., 2006b. Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells 24, 671–678.CrossRefGoogle Scholar
  19. Arbab, A.S., Yocum, G.T., Kalish, H., Jordan, E.K., Anderson, S.A., Khakoo, A.Y., Read, E.J., Frank, J.A., 2004a. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104, 1217–1223.CrossRefGoogle Scholar
  20. Arbab, A.S., Yocum, G.T., Rad, A.M., Khakoo, A.Y., Fellowes, V., Read, E.J., Frank, J.A., 2005. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed 18, 553–559.PubMedCrossRefGoogle Scholar
  21. Arbab, A.S., Yocum, G.T., Wilson, L.B., Parwana, A., Jordan, E.K., Kalish, H., Frank, J.A., 2004b. Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol Imaging 3, 24–32.CrossRefGoogle Scholar
  22. Arriagada, F.J., Osseo-Asare, K., 1999. Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. J Colloid Interface Sci 211, 210–220.PubMedCrossRefGoogle Scholar
  23. Arteaga, C., Revel, D., Zhao, S., Hadour, G., Forrat, R., Oksendal, A., Canet, E., 1999. Myocardial “low reflow” assessed by Dy-DTPA-BMA-enhanced first-pass MR imaging in a dog model. J Magn Reson Imaging 9, 679–684.PubMedCrossRefGoogle Scholar
  24. Artemov, D., Bhujwalla, Z.M., Bulte, J.W., 2004. Magnetic resonance imaging of cell surface receptors using targeted contrast agents. Curr Pharm Biotechnol 5, 485–494.PubMedCrossRefGoogle Scholar
  25. Beache, G.M., Kulke, S.F., Kantor, H.L., Niemi, P., Campbell, T.A., Chesler, D.A., Gewirtz, H., Rosen, B.R., Brady, T.J., Weisskoff, R.M., 1998. Imaging perfusion deficits in ischemic heart disease with susceptibility-enhanced T2-weighted MRI: preliminary human studies. Magn Reson Imaging 16, 19–27.PubMedCrossRefGoogle Scholar
  26. Beck, B., Plant, D.H., Grant, S.C., Thelwall, P.E., Silver, X., Mareci, T.H., Benveniste, H., Smith, M., Collins, C., Crozier, S., Blackband, S.J., 2002. Progress in high field MRI at the University of Florida. Magma 13, 152–157.PubMedCrossRefGoogle Scholar
  27. Benedetti, S., Pirola, B., Pollo, B., Magrassi, L., Bruzzone, M.G., Rigamonti, D., Galli, R., Selleri, S., Di Meco, F., De Fraja, C., Vescovi, A., Cattaneo, E., Finocchiaro, G., 2000. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 6, 447–450.PubMedCrossRefGoogle Scholar
  28. Benveniste, H., Blackband, S.J., 2006. Translational neuroscience and magnetic-resonance microscopy. Lancet Neurol 5, 536–544.PubMedCrossRefGoogle Scholar
  29. Berens, S.A., Colvin, D.C., Yu, C.G., Yezierski, R.P., Mareci, T.H., 2005. Evaluation of the pathologic characteristics of excitotoxic spinal cord injury with MR imaging. AJNR Am J Neuroradiol 26, 1612–1622.PubMedGoogle Scholar
  30. Bhorade, R., Weissleder, R., Nakakoshi, T., Moore, A., Tung, C.H., 2000. Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide. Bioconjug Chem 11, 301–305.PubMedCrossRefGoogle Scholar
  31. Billotey, C., Wilhelm, C., Devaud, M., Bacri, J.C., Bittoun, J., Gazeau, F., 2003. Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn Reson Med 49, 646–654.PubMedCrossRefGoogle Scholar
  32. Blau, H.M., Brazelton, T.R., Weimann, J.M., 2001. The evolving concept of a stem cell: entity or function? Cell 105, 829–841.PubMedCrossRefGoogle Scholar
  33. Boockvar, J.A., Schouten, J., Royo, N., Millard, M., Spangler, Z., Castelbuono, D., Snyder, E., O’Rourke, D., McIntosh, T., 2005. Experimental traumatic brain injury modulates the survival, migration, and terminal phenotype of transplanted epidermal growth factor receptor-activated neural stem cells. Neurosurgery 56, 163–171; discussion 171.PubMedGoogle Scholar
  34. Bos, C., Delmas, Y., Desmouliere, A., Solanilla, A., Hauger, O., Grosset, C., Dubus, I., Ivanovic, Z., Rosenbaum, J., Charbord, P., Combe, C., Bulte, J.W., Moonen, C.T., Ripoche, J., Grenier, N., 2004. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233, 781–789.PubMedCrossRefGoogle Scholar
  35. Boushel, R., Langberg, H., Olesen, J., Nowak, M., Simonsen, L., Bulow, J., Kjaer, M., 2000. Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green. J Appl Physiol 89, 1868–1878.PubMedGoogle Scholar
  36. Brazelton, T.R., Blau, H.M., 2005. Optimizing techniques for tracking transplanted stem cells in vivo. Stem Cells 23, 1251–1265.PubMedCrossRefGoogle Scholar
  37. Brown, M.A., Semelka, R.C., NetLibrary Inc., 1999. MRI basic principles and applications, 2nd ed. Wiley-Liss, New York.Google Scholar
  38. Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P., 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016.PubMedCrossRefGoogle Scholar
  39. Brussee, V., Merly, F., Tardif, F., Tremblay, J.P., 1998. Normal myoblast implantation in MDX mice prevents muscle damage by exercise. Biochem Biophys Res Commun 250, 321–327.PubMedCrossRefGoogle Scholar
  40. Bullok, K.E., Gammon, S.T., Violini, S., Prantner, A.M., Villalobos, V.M., Sharma, V., Piwnic-Worms, D., 2006. Permeation peptide conjugates for in vivo molecular imaging applications. Mol Imaging 5, 1–15.PubMedGoogle Scholar
  41. Bulte J.W.M., Ben-Hur T., Miller B.R., Mizrachi-Kol R., Einstein O., Reinhartz E., Zywicke H.A., Douglas T., Frank J.A. MR microscopy of magnetically labeled neurospheres transplanted into the LewisEAE rat brain. Magn. Reson. Med. 2003; 50: 201–205.PubMedCrossRefGoogle Scholar
  42. Bulte, J.W., Douglas, T., Witwer, B., Zhang, S.C., Lewis, B.K., van Gelderen, P., Zywicke, H., Duncan, I.D., Frank, J.A., 2002a. Monitoring stem cell therapy in vivo using magnetodendrimers as a new class of cellular MR contrast agents. Acad Radiol 9 Suppl 2, S332–S335.CrossRefGoogle Scholar
  43. Bulte, J.W., Douglas, T., Witwer, B., Zhang, S.C., Strable, E., Lewis, B.K., Zywicke, H., Miller, B., van Gelderen, P., Moskowitz, B.M., Duncan, I.D., Frank, J.A., 2001. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19, 1141–1147.PubMedCrossRefGoogle Scholar
  44. Bulte, J.W., Duncan, I.D., Frank, J.A., 2002b. In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab 22, 899–907.CrossRefGoogle Scholar
  45. Bulte, J.W., Kostura, L., Mackay, A., Karmarkar, P.V., Izbudak, I., Atalar, E., Fritzges, D., Rodriguez, E.R., Young, R.G., Marcelino, M., Pittenger, M.F., Kraitchman, D.L., 2005. Feridex-labeled mesenchymal stem cells: cellular differentiation and MR assessment in a canine myocardial infarction model. Acad Radiol 12 Suppl 1, S2–S6.PubMedCrossRefGoogle Scholar
  46. Bulte, J.W., Kraitchman, D.L., 2004. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17, 484–499.PubMedCrossRefGoogle Scholar
  47. Bulte, J.W., Wu, C., Brechbiel, M.W., Brooks, R.A., Vymazal, J., Holla, M., Frank, J.A., 1998. Dysprosium-DOTA-PAMAM dendrimers as macromolecular T2 contrast agents. Preparation and relaxometry. Invest Radiol 33, 841–845.PubMedCrossRefGoogle Scholar
  48. Bulte, J.W.M., Zhang, S., van Gelderen, P., Herynek, V., Jordan, E.K., Duncan, I.D., Frank, J.A., 1999. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad SciUSA96, 15256–15261.CrossRefGoogle Scholar
  49. Cahill, K.S., Gaidosh, G., Huard, J., Silver, X., Byrne, B.J., Walter, G.A., 2004a. Noninvasive monitoring and tracking of muscle stem cell transplants. Transplantation 78, 1626–1633.CrossRefGoogle Scholar
  50. Cahill, K.S., Germain, S., Byrne, B.J., Walter, G.A., 2004b. Non-invasive analysis of myoblast transplants in rodent cardiac muscle. Int J Cardiovasc Imaging 20, 593–598.CrossRefGoogle Scholar
  51. Cao, B., Zheng, B., Jankowski, R.J., Kimura, S., Ikezawa, M., Deasy, B., Cummins, J., Epperly, M., Qu-Petersen, Z., Huard, J., 2003. Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential. Nat Cell Biol 5, 640–646.PubMedCrossRefGoogle Scholar
  52. Caravan, P., 2006. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35, 512–523.PubMedCrossRefGoogle Scholar
  53. Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B., 1999. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem Rev 99, 2293–2352.PubMedCrossRefGoogle Scholar
  54. Caravan, P., Greenfield, M.T., Bulte, J.W., 2001. Molecular factors that determine Curie spin relaxation in dysprosium complexes. Magn Reson Med 46, 917–922.PubMedCrossRefGoogle Scholar
  55. Chakkalakal, J.V., Thompson, J., Parks, R.J., Jasmin, B.J., 2005. Molecular, cellular, and pharmacological therapies for Duchenne/Becker muscular dystrophies. Faseb J 19, 880–891.PubMedCrossRefGoogle Scholar
  56. Chan, W.C., Nie, S., 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018.PubMedCrossRefGoogle Scholar
  57. Chang, G.Y., Xie, X., Wu, J.C., 2006. Overview of stem cells and imaging modalities for cardiovascular diseases. J Nucl Cardiol 13, 554–569.PubMedCrossRefGoogle Scholar
  58. Chen, J.C., Goldhamer, D.J., 2003. Skeletal muscle stem cells. Reprod Biol Endocrinol 1, 101–107.PubMedCrossRefGoogle Scholar
  59. Chien, K.R., 2006. Lost and found: cardiac stem cell therapy revisited. J Clin Invest 116, 1838–1840.PubMedCrossRefGoogle Scholar
  60. Ciobanu, L., Pennington, C.H., 2004. 3D micron-scale MRI of single biological cells. Solid State Nucl Magn Reson 25, 138–141.PubMedCrossRefGoogle Scholar
  61. Ciobanu, L., Seeber, D.A., Pennington, C.H., 2002. 3D MR microscopy with resolution 3.7 microm by 3.3 microm by 3.3 microm. J Magn Reson 158, 178–182.PubMedCrossRefGoogle Scholar
  62. Cogle, C.R., Yachnis, A.T., Laywell, E.D., Zander, D.S., Wingard, J.R., Steindler, D.A., Scott, E.W., 2004. Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet 363, 1432–1437.PubMedCrossRefGoogle Scholar
  63. Contag, C.H., Ross, B.D., 2002. It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J Magn Reson Imaging 16, 378–387.PubMedCrossRefGoogle Scholar
  64. Cossu, G., Mavilio, F., 2000. Myogenic stem cells for the therapy of primary myopathies: wishful thinking or therapeutic perspective? J Clin Invest 105, 1669–1674.PubMedGoogle Scholar
  65. Crich, S.G., Biancone, L., Cantaluppi, V., Duo, D., Esposito, G., Russo, S., Camussi, G., Aime, S., 2004. Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent. Magn Reson Med 51, 938–944.PubMedCrossRefGoogle Scholar
  66. Cummings, B.J., Uchida, N., Tamaki, S.J., Salazar, D.L., Hooshmand, M., Summers, R., Gage, F.H., Anderson, A.J., 2005. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U S A 102, 14069–14074.PubMedCrossRefGoogle Scholar
  67. Cunningham, C.H., Arai, T., Yang, P.C., McConnell, M.V., Pauly, J.M., Conolly, S.M., 2005. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53, 999–1005.PubMedCrossRefGoogle Scholar
  68. Daldrup-Link, H.E., Rudelius, M., Metz, S., Piontek, G., Pichler, B., Settles, M., Heinzmann, U., Schlegel, J., Oostendorp, R.A., Rummeny, E.J., 2004. Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy. Eur J Nucl Med Mol Imaging 31, 1312–1321.PubMedCrossRefGoogle Scholar
  69. Daldrup-Link, H.E., Rudelius, M., Oostendorp, R.A., Jacobs, V.R., Simon, G.H., Gooding, C., Rummeny, E.J., 2005a. Comparison of iron oxide labeling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX. Acad Radiol 12, 502–510.CrossRefGoogle Scholar
  70. Daldrup-Link, H.E., Rudelius, M., Piontek, G., Metz, S., Brauer, R., Debus, G., Corot, C., Schlegel, J., Link, T.M., Peschel, C., Rummeny, E.J., Oostendorp, R.A., 2005b. Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 234, 197–205.CrossRefGoogle Scholar
  71. Deans, A.E., Wadghiri, Y.Z., Bernas, L.M., Yu, X., Rutt, B.K., Turnbull, D.H., 2006. Cellular MRI contrast via coexpression of transferrin receptor and ferritin. Magn Reson Med 56, 51–59.PubMedCrossRefGoogle Scholar
  72. Deasy, B.M., Huard, J., 2002. Gene therapy and tissue engineering based on muscle-derived stem cells. Curr Opin Mol Ther 4, 382–389.PubMedGoogle Scholar
  73. Dennig, J., Duncan, E., 2002. Gene transfer into eukaryotic cells using activated polyamidoamine dendrimers. J Biotechnol 90, 339–347.PubMedGoogle Scholar
  74. Dick, A.J., Guttman, M.A., Raman, V.K., Peters, D.C., Pessanha, B.S., Hill, J.M., Smith, S., Scott, G., McVeigh, E.R., Lederman, R.J., 2003. Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation 108, 2899–2904.PubMedCrossRefGoogle Scholar
  75. Dimmeler, S., Zeiher, A.M., Schneider, M.D., 2005. Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 115, 572–583.PubMedCrossRefGoogle Scholar
  76. Dubois, J., Lethimonnier, F., Vaufrey, F., Robert, P., Le Bihan, D., 2005. Frequency-shift based detection of BMS contrast agents using SSFP: potential for MRA. Magn Reson Imaging 23, 453–462.PubMedCrossRefGoogle Scholar
  77. Dunning, M.D., Kettunen, M.I., Ffrench Constant, C., Franklin, R.J.M., Brindle, K.M., 2006. Magnetic resonance imaging of functional Schwann cell transplants labelled with magnetic microspheres. Neuroimage 31, 172–180.PubMedCrossRefGoogle Scholar
  78. Empedocles, S., Bawendi, M., 1999. Spectroscopy of single CdSe nanocrystallites. Acc Chem Res 32, 389–396.CrossRefGoogle Scholar
  79. Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E., 2006. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689.PubMedCrossRefGoogle Scholar
  80. Enzmann, G.U., Benton, R.L., Talbott, J.F., Cao, Q., Whittemore, S.R., 2006. Functional considerations of stem cell transplantation therapy for spinal cord repair. J Neurotrauma 23, 479–495.PubMedCrossRefGoogle Scholar
  81. Frangioni, J.V., 2003. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7, 626–634.PubMedCrossRefGoogle Scholar
  82. Frank, J.A., Miller, B.R., Arbab, A.S., Zywicke, H.A., Jordan, E.K., Lewis, B.K., Bryant, L.H., Jr., Bulte, J.W., 2003. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228, 480–487.PubMedCrossRefGoogle Scholar
  83. Frank, J.A., Zywicke, H., Jordan, E.K., Mitchell, J., Lewis, B.K., Miller, B., Bryant, L.H., Jr., Bulte, J.W., 2002. Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9 Suppl 2, S484–S487.Google Scholar
  84. Franklin, R.J., Blaschuk, K.L., Bearchell, M.C., Prestoz, L.L., Setzu, A., Brindle, K.M., ffrench-Constant, C., 1999. Magnetic resonance imaging of transplanted oligodendrocyte precursors in the rat brain. Neuroreport 10, 3961–3965.PubMedCrossRefGoogle Scholar
  85. Fu, R., Brey, W.W., Shetty, K., Gor’kov, P., Saha, S., Long, J.R., Grant, S.C., Chekmenev, E.Y., Hu, J., Gan, Z., Sharma, M., Zhang, F., Logan, T.M., Bruschweller, R., Edison, A., Blue, A., Dixon, I.R., Markiewicz, W.D., Cross, T.A., 2005. Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory. J Magn Reson 177, 1–8.PubMedCrossRefGoogle Scholar
  86. Galvez, B.G., Sampaolesi, M., Brunelli, S., Covarello, D., Gavina, M., Rossi, B., Costantin, G., Torrente, Y., Cossu, G., 2006. Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. J Cell Biol 174, 231–243.PubMedCrossRefGoogle Scholar
  87. Gao, X., Chan, W.C., Nie, S., 2002. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt 7, 532–537.PubMedCrossRefGoogle Scholar
  88. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W., Nie, S., 2004. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22, 969–976.PubMedCrossRefGoogle Scholar
  89. Gao, X., Nie, S., 2003. Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol 21, 371–373.PubMedCrossRefGoogle Scholar
  90. Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., Nie, S., 2005. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16, 63–72.PubMedCrossRefGoogle Scholar
  91. Gaponenko, S.V., 1998. Optical properties of semiconductor nanocrystals. Cambridge Unviersity Press, Cambridge, UK; New York, NY, USA.Google Scholar
  92. Garden, O.A., Reynolds, P.R., Yates, J., Larkman, D.J., Marelli-Berg, F.M., Haskard, D.O., Edwards, A.D., George, A.J., 2006. A rapid method for labelling CD4(+) T cells with ultrasmall paramagnetic iron oxide nanoparticles for magnetic resonance imaging that preserves proliferative, regulatory and migratory behaviour in vitro. J Immunol Methods 314, 123–133.PubMedCrossRefGoogle Scholar
  93. Garot, J., Unterseeh, T., Teiger, E., Champagne, S., Chazaud, B., Gherardi, R., Hittinger, L., Gueret, P., Rahmouni, A., 2003. Magnetic resonance imaging of targeted catheter-based implantation of myogenic precursor cells into infarcted left ventricular myocardium. J Am Coll Cardiol 41, 1841–1846.PubMedCrossRefGoogle Scholar
  94. Ghostine, S., Carrion, C., Souza, L.C., Richard, P., Bruneval, P., Vilquin, J.T., Pouzet, B., Schwartz, K., Menasche, P., Hagege, A.A., 2002. Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation 106, I131–136.PubMedGoogle Scholar
  95. Gillies, R.J., Raghunand, N., Garcia-Martin, M.L., Gatenby, R.A., 2004. pH imaging. A review of pH measurement methods and applications in cancers. IEEE Eng Med Biol Mag 23, 57–64.PubMedCrossRefGoogle Scholar
  96. Gilman, S., 2006. Pharmacologic management of ischemic stroke: Relevance to stem cell therapy. Exp Neurol 199, 28–36.PubMedCrossRefGoogle Scholar
  97. Gimi, B., Mori, N., Ackerstaff, E., Frost, E.E., Bulte, J.W., Bhujwalla, Z.M., 2006. Noninvasive MRI of endothelial cell response to human breast cancer cells. Neoplasia 8, 207–213.PubMedCrossRefGoogle Scholar
  98. Gupta, A.K., Gupta, M., 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021.PubMedCrossRefGoogle Scholar
  99. Hadjantonakis, A.K., Dickinson, M.E., Fraser, S.E., Papaioannou, V.E., 2003. Technicolour transgenics: imaging tools for functional genomics in the mouse. Nat Rev Genet 4, 613–625.PubMedCrossRefGoogle Scholar
  100. Haraldseth, O., Jones, R.A., Muller, T.B., Fahlvik, A.K., Oksendal, A.N., 1996. Comparison of dysprosium DTPA BMA and superparamagnetic iron oxide particles as susceptibility contrast agents for perfusion imaging of regional cerebral ischemia in the rat. J Magn Reson Imaging 6, 714–717.PubMedCrossRefGoogle Scholar
  101. Hauger, O., Frost, E.E., van Heeswijk, R., Deminiere, C., Xue, R., Delmas, Y., Combe, C., Moonen, C.T., Grenier, N., Bulte, J.W., 2006. MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy. Radiology 238, 200–210.PubMedCrossRefGoogle Scholar
  102. He, G., Hao, Z., Wei, H., Yi, W., Zhang, X., Yue, T., Wei, Y., Hu, S., 2007. In vivo imaging of bone marrow mesenchymal stem cells transplanted into myocardium using magnetic resonance imaging: A novel method to trace the transplanted cells. Int J Cardiol 114, 4–10.PubMedCrossRefGoogle Scholar
  103. Hekmatyar, S.K., Hopewell, P., Pakin, S.K., Babsky, A., Bansal, N., 2005. Noninvasive MR thermometry using paramagnetic lanthanide complexes of 1,4,7,10tetraazacyclodoecane-alpha,alpha,alpha,alpha-tetramethyl-1, 4,7,10-tetraacetic acid (DOTMA4-). Magn Reson Med 53, 294–303.PubMedCrossRefGoogle Scholar
  104. Heyn, C., Ronald, J.A., Mackenzie, L.T., MacDonald, I.C., Chambers, A.F., Rutt, B.K., Foster, P.J., 2006. In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 55, 23–29.PubMedCrossRefGoogle Scholar
  105. Himes, N., Min, J.Y., Lee, R., Brown, C., Shea, J., Huang, X., Xiao, Y.F., Morgan, J.P., Burstein, D., Oettgen, P., 2004. In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction. Magn Reson Med 52, 1214–1219.PubMedCrossRefGoogle Scholar
  106. Himmelreich, U., Weber, R., Ramos-Cabrer, P., Wegener, S., Kandal, K., Shapiro, E.M., Koretsky, A.P., Hoehn, M., 2005. Improved stem cell MR detectability in animal models by modification of the inhalation gas. Mol Imaging 4, 104–109.PubMedGoogle Scholar
  107. Hinds, K.A., Hill, J.M., Shapiro, E.M., Laukkanen, M.O., Silva, A.C., Combs, C.A., Varney, T.R., Balaban, R.S., Koretsky, A.P., Dunbar, C.E., 2003. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102, 867–872.PubMedCrossRefGoogle Scholar
  108. Hoehn, M., Kustermann, E., Blunk, J., Wiedermann, D., Trapp, T., Wecker, S., Focking, M., Arnold, H., Hescheler, J., Fleischmann, B.K., Schwindt, W., Buhrle, C., 2002. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A 99, 16267–16272.PubMedCrossRefGoogle Scholar
  109. Honma, T., Honmou, O., Iihoshi, S., Harada, K., Houkin, K., Hamada, H., Kocsis, J.D., 2006. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Exp Neurol 199, 56–66.PubMedCrossRefGoogle Scholar
  110. Huard, J., Acsadi, G., Jani, A., Massie, B., Karpati, G., 1994. Gene transfer into skeletal muscles by isogenic myoblasts. Hum Gene Ther 5, 949–958.PubMedGoogle Scholar
  111. Huard, J., Cao, B., Qu-Petersen, Z., 2003. Muscle-derived stem cells: potential for muscle regeneration. Birth Defects Res Part C Embryo Today 69, 230–237.CrossRefGoogle Scholar
  112. Huber, M.M., Staubli, A.B., Kustedjo, K., Gray, M.H., Shih, J., Fraser, S.E., Jacobs, R.E., Meade, T.J., 1998. Fluorescently detectable magnetic resonance imaging agents. Bioconjug Chem 9, 242–249.PubMedCrossRefGoogle Scholar
  113. Hudde, T., Rayner, S.A., Comer, R.M., Weber, M., Isaacs, J.D., Waldmann, H., Larkin, D.F., George, A.J., 1999. Activated polyamidoamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium. Gene Ther 6, 939–943.PubMedCrossRefGoogle Scholar
  114. Ikezawa, M., Cao, B., Qu, Z., Peng, H., Xiao, X., Pruchnic, R., Kimura, S., Miike, T., Huard, J., 2003. Dystrophin delivery in dystrophin-deficient DMDmdx skeletal muscle by isogenic muscle-derived stem cell transplantation. Hum Gene Ther 14, 1535–1546.PubMedCrossRefGoogle Scholar
  115. Ittrich, H., Lange, C., Dahnke, H., Zander, A.R., Adam, G., Nolte-Ernsting, C., 2005. [Labeling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3T]. Rofo 177, 1151–1163.PubMedGoogle Scholar
  116. Jankowski, R.J., Deasy, B.M., Huard, J., 2002. Muscle-derived stem cells. Gene Ther 9, 642–647.PubMedCrossRefGoogle Scholar
  117. Jendelova, P., Herynek, V., DeCroos, J., Glogarova, K., Andersson, B., Hajek, M., Sykova, E., 2003. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn Reson Med 50, 767–776.PubMedCrossRefGoogle Scholar
  118. Jendelova, P., Herynek, V., Urdzikova, L., Glogarova, K., Kroupova, J., Andersson, B., Bryja, V., Burian, M., Hajek, M., Sykova, E., 2004. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76, 232–243.PubMedCrossRefGoogle Scholar
  119. Jendelova, P., Herynek, V., Urdzikova, L., Glogarova, K., Rahmatova, S., Fales, I., Andersson, B., Prochazka, P., Zamecnik, J., Eckschlager, T., Kobylka, P., Hajek, M., Sykova, E., 2005. Magnetic resonance tracking of human CD34+ progenitor cells separated by means of immunomagnetic selection and transplanted intoinjured rat brain. Cell Transplant 14, 173–182.PubMedGoogle Scholar
  120. Jiang, Q., Zhang, Z.G., Ding, G.L., Silver, B., Zhang, L., Meng, H., Lu, M., Pourabdillah-Nejed, D.S., Wang, L., Savant-Bhonsale, S., Li, L., Bagher-Ebadian, H., Hu, J., Arbab, A.S., Vanguri, P., Ewing, J.R., Ledbetter, K.A., Chopp, M., 2006. MRI detects white matter reorganization after neural progenitor cell treatment of stroke. Neuroimage 32, 1080–1089.PubMedCrossRefGoogle Scholar
  121. Jiang, Q., Zhang, Z.G., Ding, G.L., Zhang, L., Ewing, J.R., Wang, L., Zhang, R., Li, L., Lu, M., Meng, H., Arbab, A.S., Hu, J., Li, Q.J., Pourabdollah Nejad, D.S., Athiraman, H., Chopp, M., 2005. Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage 28, 698–707.PubMedCrossRefGoogle Scholar
  122. Jiang, W., Papa, E., Fischer, H., Mardyani, S., Chan, W.C., 2004. Semiconductor quantum dots as contrast agents for whole animal imaging. Trends Biotechnol 22, 607–609.PubMedCrossRefGoogle Scholar
  123. Jobsis, F.F., 1977. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264–1267.PubMedCrossRefGoogle Scholar
  124. Johnson, K.M., Tao, J.Z., Kennan, R.P., Gore, J.C., 2000. Intravascular susceptibility agent effects on tissue transverse relaxation rates in vivo. Magn Reson Med 44, 909–914.PubMedCrossRefGoogle Scholar
  125. Ju, S., Teng, G., Zhang, Y., Ma, M., Chen, F., Ni, Y., 2006. In vitro labeling and MRI of mesenchymal stem cells from human umbilical cord blood. Magn Reson Imaging 24, 611–617.PubMedCrossRefGoogle Scholar
  126. Kellar, K.E., Fossheim, S.L., Koenig, S.H., 1998. Magnetic field dependence of solvent proton relaxation by solute dysprosium (III) complexes. Invest Radiol 33, 835–840.PubMedCrossRefGoogle Scholar
  127. Kessler, P.D., Byrne, B.J., 1999. Myoblast cell grafting into heart muscle: cellular biology and potential applications. Annu Rev Physiol 61, 219–242.PubMedCrossRefGoogle Scholar
  128. Kim, S., Lim, Y.T., Soltesz, E.G., De Grand, A.M., Lee, J., Nakayama, A., Parker, J.A., Mihaljevic, T., Laurence, R.G., Dor, D.M., Cohn, L.H., Bawendi, M.G., Frangioni, J.V., 2004. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22, 93–97.PubMedCrossRefGoogle Scholar
  129. Kircher, M.F., Allport, J.R., Graves, E.E., Love, V., Josephson, L., Lichtman, A.H., Weissleder, R., 2003. In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 63, 6838–6846.PubMedGoogle Scholar
  130. Kirik, D., Breysse, N., Bjorklund, T., Besret, L., Hantraye, P., 2005. Imaging in cell-based therapy for neurodegenerative diseases. Eur J Nucl Med Mol Imaging 32 Suppl 2, S417–S434.PubMedCrossRefGoogle Scholar
  131. Kraitchman, D.L., Heldman, A.W., Atalar, E., Amado, L.C., Martin, B.J., Pittenger, M.F., Hare, J.M., Bulte, J.W., 2003. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107, 2290–2293.PubMedCrossRefGoogle Scholar
  132. Kraitchman, D.L., Tatsumi, M., Gilson, W.D., Ishimori, T., Kedziorek, D., Walczak, P., Segars, W.P., Chen, H.H., Fritzges, D., Izbudak, I., Young, R.G., Marcelino, M., Pittenger, M.F., Solaiyappan, M., Boston, R.C., Tsui, B.M., Wahl, R.L., Bulte, J.W., 2005. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112, 1451–1461.PubMedCrossRefGoogle Scholar
  133. Kukowska-Latallo, J.F., Bielinska, A.U., Johnson, J., Spindler, R., Tomalia, D.A., Baker, J.R., Jr., 1996. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc Natl Acad SciUSA93, 4897–4902.CrossRefGoogle Scholar
  134. Kustermann, E., Roell, W., Breitbach, M., Wecker, S., Wiedermann, D., Buehrle, C., Welz, A., Hescheler, J., Fleischmann, B.K., Hoehn, M., 2005. Stem cell implantation in ischemic mouse heart: a high-resolution magnetic resonance imaging investigation. NMR Biomed 18, 362–370.PubMedCrossRefGoogle Scholar
  135. Laflamme, M.A., Murry, C.E., 2005. Regenerating the heart. Nat Biotechnol 23, 845–856.PubMedCrossRefGoogle Scholar
  136. Lakshmipathy, U., Verfaillie, C., 2005. Stem cell plasticity. Blood Reviews 19, 29–38.PubMedCrossRefGoogle Scholar
  137. Lanza, G.M., Winter, P., Caruthers, S., Schmeider, A., Crowder, K., Morawski, A., Zhang, H., Scott, M.J., Wickline, S.A., 2004a. Novel paramagnetic contrast agents for molecular imaging and targeted drug delivery. Curr Pharm Biotechnol 5, 495–507.CrossRefGoogle Scholar
  138. Lanza, G.M., Winter, P.M., Caruthers, S.D., Morawski, A.M., Schmieder, A.H., Crowder, K.C., Wickline, S.A., 2004b. Magnetic resonance molecular imaging with nanoparticles. J Nucl Cardiol 11, 733–743.CrossRefGoogle Scholar
  139. Lapidot, T., Dar, A., Kollet, O., 2005. How do stem cells find their way home? Blood 106, 1901–1910.PubMedCrossRefGoogle Scholar
  140. Laywell, E.D., Kukekov, V.G., Steindler, D.A., 1999. Multipotent neurospheres can be derived from forebrain subependymal zone and spinal cord of adult mice after protracted postmortem intervals. Exp Neurol 156, 430–433.PubMedCrossRefGoogle Scholar
  141. Laywell, E.D., Rakic, P., Kukekov, V.G., Holland, E.C., Steindler, D.A., 2000. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad SciUSA97, 13883–13888.CrossRefGoogle Scholar
  142. Laywell, E.D., Steindler, D.A., 2002. Glial stem-like cells: implications for ontogeny, phylogeny, and CNS regeneration. Prog Brain Res 138, 435–450.PubMedGoogle Scholar
  143. Lee, I.H., Bulte, J.W., Schweinhardt, P., Douglas, T., Trifunovski, A., Hofstetter, C., Olson, L., Spenger, C., 2004. In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol 187, 509–516.PubMedCrossRefGoogle Scholar
  144. Lee, J.Y., Qu-Petersen, Z., Cao, B., Kimura, S., Jankowski, R., Cummins, J., Usas, A., Gates, C., Robbins, P., Wernig, A., Huard, J., 2000. Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol 150, 1085–1100.PubMedCrossRefGoogle Scholar
  145. Leor, J., Patterson, M., Quinones, M.J., Kedes, L.H., Kloner, R.A., 1996. Transplantation of fetal myocardial tissue into the infarcted myocardium of rat. A potential method for repair of infarcted myocardium? Circulation 94, II332–336.PubMedGoogle Scholar
  146. Leor, J., Rozen, L., Zuloff-Shani, A., Feinberg, M.S., Amsalem, Y., Barbash, I.M., Kachel, E., Holbova, R., Mardor, Y., Daniels, D., Ocherashvilli, A., Orenstein, A., Danon, D., 2006. Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation 114, I94–100.PubMedCrossRefGoogle Scholar
  147. Lepore, A.C., Walczak, P., Rao, M.S., Fischer, I., Bulte, J.W., 2006. MR imaging of lineage-restricted neural precursors following transplantation into the adult spinal cord. Exp Neurol 201, 49–59.PubMedCrossRefGoogle Scholar
  148. Leri, A., Kajstura, J., Anversa, P., 2005. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85, 1373–1416.PubMedCrossRefGoogle Scholar
  149. Lewin, M., Carlesso, N., Tung, C.H., Tang, X.W., Cory, D., Scadden, D.T., Weissleder, R., 2000. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18, 410–414.PubMedCrossRefGoogle Scholar
  150. Lim, Y.T., Kim, S., Nakayama, A., Stott, N.E., Bawendi, M.G., Frangioni, J.V., 2003. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2, 50–64.PubMedCrossRefGoogle Scholar
  151. Lin, Z., Cui, S., Zhang, H., Chen, Q., Yang, B., Su, X., Zhang, J., Jin, Q., 2003. Studies on quantum dots synthesized in aqueous solution for biological labeling via electrostatic interaction. Anal Biochem 319, 239–243.PubMedCrossRefGoogle Scholar
  152. Lindvall, O., Kokaia, Z., 2006. Stem cells for the treatment of neurological disorders. Nature 441, 1094–1096.PubMedCrossRefGoogle Scholar
  153. Liu, M., Guo, Y.M., Wu, Q.F., Yang, J.L., Wang, P., Wang, S.C., Guo, X.J., Qiang, Y.Q., Duan, X.Y., 2006. Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro. Biochem Biophys Res Commun 347, 133–140.PubMedCrossRefGoogle Scholar
  154. Louie, A.Y., Huber, M.M., Ahrens, E.T., Rothbacher, U., Moats, R., Jacobs, R.E., Fraser, S.E., Meade, T.J., 2000. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18, 321–325.PubMedCrossRefGoogle Scholar
  155. Lyons, A.B., Parish, C.R., 1994. Determination of lymphocyte division by flow cytometry. J Immunol Methods 171, 131–137.PubMedCrossRefGoogle Scholar
  156. Magnitsky, S., Watson, D.J., Walton, R.M., Pickup, S., Bulte, J.W., Wolfe, J.H., Poptani, H., 2005. In vivo and ex vivo MRI detection of localized and disseminated neural stem cell grafts in the mouse brain. Neuroimage 26, 744–754.PubMedCrossRefGoogle Scholar
  157. Mani, V., Briley-Saebo, K.C., Itskovich, V.V., Samber, D.D., Fayad, Z.A., 2006. Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magn Reson Med 55, 126–135.PubMedCrossRefGoogle Scholar
  158. Mantyla, T., Hakumaki, J.M., Huhtala, T., Narvanen, A., Yla-Herttuala, S., 2006. Targeted magnetic resonance imaging of Scavidin-receptor in human umbilical vein endothelial cells in vitro. Magn Reson Med 55, 800–804.PubMedCrossRefGoogle Scholar
  159. Maronpot, R.R., Sills, R.C., Johnson, G.A., 2004. Applications of magnetic resonance microscopy. Toxicol Pathol 32 Suppl 2, 42–48.CrossRefGoogle Scholar
  160. Massoud, T.F., Gambhir, S.S., 2003. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17, 545–580.PubMedCrossRefGoogle Scholar
  161. Masuda, C., Maki, Z., Morikawa, S., Morita, M., Inubushi, T., Matsusue, Y., Yamagata, S., Taguchi, H., Doi, Y., Shirai, N., Hirao, K., Tooyama, I., 2006. MR tracking of transplanted glial cells using poly-l-lysine-CF(3). Neurosci Res.Google Scholar
  162. Mathur, A., Martin, J.F., 2004. Stem cells and repair of the heart. The Lancet 364, 183–192.CrossRefGoogle Scholar
  163. Matuszewski, L., Persigehl, T., Wall, A., Schwindt, W., Tombach, B., Fobker, M., Poremba, C., Ebert, W., Heindel, W., Bremer, C., 2005. Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235, 155–161.PubMedCrossRefGoogle Scholar
  164. Mayer-Kuckuk, P., Gade, T.P., Buchanan, I.M., Doubrovin, M., Ageyeva, L., Bertino, J.R., Boskey, A.L., Blasberg, R.G., Koutcher, J.A., Banerjee, D., 2005. High-resolution imaging of bone precursor cells within the intact bone marrow cavity of living mice. Mol Ther 12, 33–41.PubMedCrossRefGoogle Scholar
  165. Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H., 2005. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4, 435–446.PubMedCrossRefGoogle Scholar
  166. Menasche, P., Hagege, A.A., Scorsin, M., Pouzet, B., Desnos, M., Duboc, D., Schwartz, K., Vilquin, J.T., Marolleau, J.P., 2001. Myoblast transplantation for heart failure. Lancet 357, 279–280.PubMedCrossRefGoogle Scholar
  167. Metz, S., Bonaterra, G., Rudelius, M., Settles, M., Rummeny, E.J., Daldrup-Link, H.E., 2004. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14, 1851–1858.PubMedCrossRefGoogle Scholar
  168. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S., 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544.PubMedCrossRefGoogle Scholar
  169. Min, J.J., Gambhir, S.S., 2004. Gene therapy progress and prospects. Gene Ther 11, 115–125.PubMedGoogle Scholar
  170. Mintz-Hittner, H.A., Semina, E.V., Frishman, L.J., Prager, T.C., Murray, J.C., 2004. VSX1 (RINX) mutation with craniofacial anomalies, empty sella, corneal endothelial changes, and abnormal retinal and auditory bipolar cells. Ophthalmology 111, 828–836.PubMedCrossRefGoogle Scholar
  171. Miyoshi, S., Flexman, J.A., Cross, D.J., Maravilla, K.R., Kim, Y., Anzai, Y., Oshima, J., Minoshima, S., 2005. Transfection of neuroprogenitor cells with iron nanoparticles for magnetic resonance imaging tracking: cell viability, differentiation, and intracellular localization. Mol Imaging Biol 7, 286–295.PubMedCrossRefGoogle Scholar
  172. Modo, M., Cash, D., Mellodew, K., Williams, S.C., Fraser, S.E., Meade, T.J., Price, J., Hodges, H., 2002. Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage 17, 803–811.PubMedCrossRefGoogle Scholar
  173. Modo, M., Hoehn, M., Bulte, J.W., 2005. Cellular MR imaging. Mol Imaging 4, 143–164.PubMedGoogle Scholar
  174. Modo, M., Mellodew, K., Cash, D., Fraser, S.E., Meade, T.J., Price, J., Williams, S.C., 2004. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 21, 311–317.PubMedCrossRefGoogle Scholar
  175. Montet-Abou, K., Montet, X., Weissleder, R., Josephson, L., 2005. Transfection agent induced nanoparticle cell loading. Mol Imaging 4, 165–171.PubMedGoogle Scholar
  176. Moore, K.A., Lemischka, I.R., 2006. Stem cells and their niches. Science 311, 1880–1885.PubMedCrossRefGoogle Scholar
  177. Morawski, A.M., Lanza, G.A., Wickline, S.A., 2005. Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr Opin Biotechnol 16, 89–92.PubMedCrossRefGoogle Scholar
  178. Morawski, A.M., Winter, P.M., Crowder, K.C., Caruthers, S.D., Fuhrhop, R.W., Scott, M.J., Robertson, J.D., Abendschein, D.R., Lanza, G.M., Wickline, S.A., 2004. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med 51, 480–486.PubMedCrossRefGoogle Scholar
  179. Mulder, W.J., Koole, R., Brandwijk, R.J., Storm, G., Chin, P.T., Strijkers, G.J., de Mello Donega, C., Nicolay, K., Griffioen, A.W., 2006a. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6, 1–6.CrossRefGoogle Scholar
  180. Mulder, W.J., Strijkers, G.J., van Tilborg, G.A., Griffioen, A.W., Nicolay, K., 2006b. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19, 142–164.CrossRefGoogle Scholar
  181. Muller, F.J., Snyder, E.Y., Loring, J.F., 2006. Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 7, 75–84.PubMedCrossRefGoogle Scholar
  182. Ntziachristos, V., Ripoll, J., Wang, L.V., Weissleder, R., 2005. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23, 313–320.PubMedCrossRefGoogle Scholar
  183. Oshima, H., Payne, T.R., Urish, K.L., Sakai, T., Ling, Y., Gharaibeh, B., Tobita, K., Keller, B.B., Cummins, J.H., Huard, J., 2005. Differential myocardial infarct repair with muscle stem cells compared to myoblasts. Mol Ther 12, 1130–1141.PubMedCrossRefGoogle Scholar
  184. Othman, S.F., Xu, H., Royston, T.J., Magin, R.L., 2005. Microscopic magnetic resonance elastography (microMRE). Magn Reson Med 54, 605–615.PubMedCrossRefGoogle Scholar
  185. Palmer, G.D., Steinert, A., Pascher, A., Gouze, E., Gouze, J.N., Betz, O., Johnstone, B., Evans, C.H., Ghivizzani, S.C., 2005. Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro. Mol Ther 12, 219–228.PubMedCrossRefGoogle Scholar
  186. Parungo, C.P., Colson, Y.L., Kim, S.W., Kim, S., Cohn, L.H., Bawendi, M.G., Frangioni, J.V., 2005. Sentinel lymph node mapping of the pleural space. Chest 127, 1799–1804.PubMedCrossRefGoogle Scholar
  187. Payne, T.R., Oshima, H., Sakai, T., Ling, Y., Gharaibeh, B., Cummins, J., Huard, J., 2005. Regeneration of dystrophin-expressing myocytes in the mdx heart by skeletal muscle stem cells. Gene Ther 12, 1264–1274.PubMedCrossRefGoogle Scholar
  188. Pearse, D.D., Bunge, M.B., 2006. Designing cell-and gene-based regeneration strategies to repair the injured spinal cord. J Neurotrauma 23, 438–452.PubMedCrossRefGoogle Scholar
  189. Pinaud, F., Michalet, X., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Iyer, G., Weiss, S., 2006. Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27, 1679–1687.PubMedCrossRefGoogle Scholar
  190. Pirko, I., Fricke, S.T., Johnson, A.J., Rodriguez, M., Macura, S.I., 2005. Magnetic resonance imaging, microscopy, and spectroscopy of the central nervous system in experimental animals. NeuroRx 2, 250–264.PubMedCrossRefGoogle Scholar
  191. Pittenger, M.F., Mosca, J.D., McIntosh, K.R., 2000. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Top Microbiol Immunol 251, 3–11.PubMedGoogle Scholar
  192. Qhobosheane, M., Santra, S., Zhang, P., Tan, W., 2001. Biochemically functionalized silica nanoparticles. Analyst 126, 1274–1278.PubMedCrossRefGoogle Scholar
  193. Qu-Petersen, Z., Deasy, B., Jankowski, R., Ikezawa, M., Cummins, J., Pruchnic, R., Mytinger, J., Cao, B., Gates, C., Wernig, A., Huard, J., 2002. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157, 851–864.PubMedCrossRefGoogle Scholar
  194. Quesenberry, P.J., Abedi, M., Aliotta, J., Colvin, G., Demers, D., Dooner, M., Greer, D., Hebert, H., Menon, M.K., Pimentel, J., Paggioli, D., 2004. Stem cell plasticity: an overview. Blood Cells, Molecules, and Diseases 32, 1–4.PubMedCrossRefGoogle Scholar
  195. Rando, T.A., 2006. Stem cells, ageing and the quest for immortality. Nature 441, 1080–1086.PubMedCrossRefGoogle Scholar
  196. Renshaw, P.F., Owen, C.S., Evans, A.E., Leigh, J.S., Jr., 1986. Immunospecific NMR contrast agents. Magn Reson Imaging 4, 351–357.PubMedCrossRefGoogle Scholar
  197. Riviere, C., Boudghene, F.P., Gazeau, F., Roger, J., Pons, J.-N., Laissy, J.-P., Allaire, E., Michel, J.-B., Letourneur, D., Deux, J.-F., 2005. Iron Oxide Nanoparticle-labeled Rat Smooth Muscle Cells: Cardiac MR Imaging for Cell Graft Monitoring and Quantitation. Radiology 235, 959–967.PubMedCrossRefGoogle Scholar
  198. Robinson, S.W., Cho, P.W., Levitsky, H.I., Olson, J.L., Hruban, R.H., Acker, M.A., Kessler, P.D., 1996. Arterial delivery of genetically labelled skeletal myoblasts to the murine heart: long-term survival and phenotypic modification of implanted myoblasts. Cell Transplant 5, 77–91.PubMedCrossRefGoogle Scholar
  199. Rudin, M., Weissleder, R., 2003. Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2, 123–131.PubMedCrossRefGoogle Scholar
  200. Saeed, M., Saloner, D., Weber, O., Martin, A., Henk, C., Higgins, C., 2005. MRI in guiding and assessing intramyocardial therapy. Eur Radiol 15, 851–863.PubMedCrossRefGoogle Scholar
  201. Sakai, T., Ling, Y., Payne, T.R., Huard, J., 2002. The use of ex vivo gene transfer based on muscle-derived stem cells for cardiovascular medicine. Trends Cardiovasc Med 12, 115–120.PubMedCrossRefGoogle Scholar
  202. Sampaolesi, M., Torrente, Y., Innocenzi, A., Tonlorenzi, R., D’Antona, G., Pellegrino, M.A., Barresi, R., Bresolin, N., De Angelis, M.G., Campbell, K.P., Bottinelli, R., Cossu, G., 2003. Cell therapy of alpha-sarcoglycan null dystrophic mice through intraarterial delivery of mesoangioblasts. Science 301, 487–492.PubMedCrossRefGoogle Scholar
  203. Santra, S., Bagwe, R.P., Dutta, D., Stanley, J.T., Walter, G., Tan, W., Moudgil, B., Mericle, R.A., 2005a. Synthesis and Characterization of Fluorescent, Radio-Opaque, and Paramagnetic Silica Nanoparticles for Multimodal Bioimaging Applications. Adv Mater 17, 2165–2169.CrossRefGoogle Scholar
  204. Santra, S., Dutta, D., Walter, G.A., Moudgil, B.M., 2005b. Fluorescent nanoparticle probes for cancer imaging. Technol Cancer Res Treat 4, 593–602.Google Scholar
  205. Santra, S., Wang, K., Tapec, R., Tan, W., 2001a. Development of novel dye-doped silica nanoparticles for biomarker application. J Biomed Opt 6, 160–166.CrossRefGoogle Scholar
  206. Santra, S., Yang, H., Dutta, D., Stanley, J.T., Holloway, P.H., Tan, W., Moudgil, B.M., Mericle, R.A., 2004. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem Commun (Camb), 2810–2811.Google Scholar
  207. Santra, S., Yang, H., Stanley, J.T., Holloway, P.H., Moudgil, B.M., Walter, G., Mericle, R.A., 2005c. Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots. Chem Commun (Camb), 3144–3146.Google Scholar
  208. Santra, S., Zhang, P., Wang, K., Tapec, R., Tan, W., 2001b. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73, 4988–4993.CrossRefGoogle Scholar
  209. Scheffler, B., Horn, M., Blumcke, I., Laywell, E.D., Coomes, D., Kukekov, V.G., Steindler, D.A., 1999. Marrow-mindedness: a perspective on neuropoiesis. Trends Neurosci 22, 348–357.PubMedCrossRefGoogle Scholar
  210. Scheffler, B., Walton, N.M., Lin, D.D., Goetz, A.K., Enikolopov, G., Roper, S.N., Steindler, D.A., 2005. Phenotypic and functional characterization of adult brain neuropoiesis. Proc Natl Acad SciUSA 102, 9353–9358.CrossRefGoogle Scholar
  211. Schmieder, A.H., Winter, P.M., Caruthers, S.D., Harris, T.D., Williams, T.A., Allen, J.S., Lacy, E.K., Zhang, H., Scott, M.J., Hu, G., Robertson, J.D., Wickline, S.A., Lanza, G.M., 2005. Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic nanoparticles. Magn Reson Med 53, 621–627.PubMedCrossRefGoogle Scholar
  212. Scorsin, M., Hagege, A.A., Marotte, F., Mirochnik, N., Copin, H., Barnoux, M., Sabri, A., Samuel, J.L., Rappaport, L., Menasche, P., 1997. Does transplantation of cardiomyocytes improve function of infarcted myocardium? Circulation 96, II-188–193.Google Scholar
  213. Scorsin, M., Hagege, A., Vilquin, J.T., Fiszman, M., Marotte, F., Samuel, J.L., Rappaport, L., Schwartz, K., Menasche, P., 2000. Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J Thorac Cardiovasc Surg 119, 1169–1175.PubMedCrossRefGoogle Scholar
  214. Scorsin, M., Marotte, F., Sabri, A., Le Dref, O., Demirag, M., Samuel, J.L., Rappaport, L., Menasche, P., 1996. Can grafted cardiomyocytes colonize peri-infarct myocardial areas? Circulation 94, II337–340.PubMedGoogle Scholar
  215. Sevick-Muraca, E.M., Houston, J.P., Gurfinkel, M., 2002. Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr Opin Chem Biol 6, 642–650.PubMedCrossRefGoogle Scholar
  216. Shah, D.S., Sakthivel, T., Toth, I., Florence, A.T., Wilderspin, A.F., 2000. DNA transfection and transfected cell viability using amphipathic asymmetric dendrimers. Int J Pharm 208, 41–48.PubMedCrossRefGoogle Scholar
  217. Shapiro, E.M., Gonzalez-Perez, O., Manuel Garcia-Verdugo, J., Alvarez-Buylla, A., Koretsky, A.P., 2006a. Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain. Neuroimage 32:1150–1157.CrossRefGoogle Scholar
  218. Shapiro, E.M., Sharer, K., Skrtic, S., Koretsky, A.P., 2006b. In vivo detection of single cells by MRI. Magn Reson Med 55, 242–249.CrossRefGoogle Scholar
  219. Shapiro, E.M., Skrtic, S., Koretsky, A.P., 2005. Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53, 329–338.PubMedCrossRefGoogle Scholar
  220. Sharma, P., Brown, S., Walter, G., Santra, S., Moudgil, B., 2006. Nanoparticles for bioimaging. Adv Colloid Interface Sci 16:123–126.Google Scholar
  221. Sitharaman, B., Kissell, K.R., Hartman, K.B., Tran, L.A., Baikalov, A., Rusakova, I., Sun, Y., Khant, H.A., Ludtke, S.J., Chiu, W., Laus, S., Toth, E., Helm, L., Merbach, A.E., Wilson, L.J., 2005. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem Commun (Camb), 3915–3917.Google Scholar
  222. Skuk, D., Tremblay, J.P., 2003. Cell therapies for inherited myopathies. Curr Opin Rheumatol 15, 723–729.PubMedCrossRefGoogle Scholar
  223. Smirnov, P., Gazeau, F., Beloeil, J.-C., Doan, B.T., Wilhelm, C., Gillet, B., 2006. Single-cell detection by gradient echo 9.4 T MRI: a parametric study. Contrast Media & Molecular Imaging 1, 165–174.CrossRefGoogle Scholar
  224. Smith, A.M., Gao, X., Nie, S., 2004. Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 80, 377–385.PubMedGoogle Scholar
  225. Smythe, G.M., Hodgetts, S.I., Grounds, M.D., 2000. Immunobiology and the future of myoblast transfer therapy. Mol Ther 1, 304–313.PubMedCrossRefGoogle Scholar
  226. Smythe, G.M., Hodgetts, S.I., Grounds, M.D., 2001. Problems and solutions in myoblast transfer therapy. J Cell Mol Med 5, 33–47.PubMedCrossRefGoogle Scholar
  227. Snoussi, K., Bulte, J.W., Gueron, M., van Zijl, P.C., 2003. Sensitive CEST agents based on nucleic acid imino proton exchange: detection of poly(rU) and of a dendrimerpoly(rU) model for nucleic acid delivery and pharmacology. Magn Reson Med 49, 998–1005.PubMedCrossRefGoogle Scholar
  228. Sosnovik, D.E., Schellenberger, E.A., Nahrendorf, M., Novikov, M.S., Matsui, T., Dai, G., Reynolds, F., Grazette, L., Rosenzweig, A., Weissleder, R., Josephson, L., 2005. Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Reson Med 54, 718–724.PubMedCrossRefGoogle Scholar
  229. Steigerwald, M.L., Brus, L.E., 1990. Semiconductor Crystallites – a Class of Large Molecules. Accounts of Chemical Research 23, 183–188.CrossRefGoogle Scholar
  230. Steindler, D.A., 2002. Neural stem cells, scaffolds, and chaperones. Nat Biotechnol 20, 1091–1093.PubMedCrossRefGoogle Scholar
  231. Steindler, D.A., Kadrie, T., Fillmore, H., Thomas, L.B., 1996. The subependymal zone: “brain marrow”. Prog Brain Res 108, 349–363.PubMedCrossRefGoogle Scholar
  232. Steindler, D.A., Pincus, D.W., 2002. Stem cells and neuropoiesis in the adult human brain. Lancet 359, 1047–1054.PubMedCrossRefGoogle Scholar
  233. Stroh, A., Faber, C., Neuberger, T., Lorenz, P., Sieland, K., Jakob, P.M., Webb, A., Pilgrimm, H., Schober, R., Pohl, E.E., Zimmer, C., 2005a. In vivo detection limits of magnetically labeled embryonic stem cells in the rat brain using high-field (17.6 T) magnetic resonance imaging. Neuroimage 24, 635–645.CrossRefGoogle Scholar
  234. Stroh, M., Zimmer, J.P., Duda, D.G., Levchenko, T.S., Cohen, K.S., Brown, E.B., Scadden, D.T., Torchilin, V.P., Bawendi, M.G., Fukumura, D., Jain, R.K., 2005b. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11, 678–682.CrossRefGoogle Scholar
  235. Stuckey, D.J., Carr, C.A., Martin-Rendon, E., Tyler, D.J., Willmott, C., Cassidy, P.J., Hale, S.J., Schneider, J.E., Tatton, L., Harding, S.E., Radda, G.K., Watt, S., Clarke, K., 2006. Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells 24, 1968–1975.PubMedCrossRefGoogle Scholar
  236. Sun, R., Dittrich, J., Le-Huu, M., Mueller, M.M., Bedke, J., Kartenbeck, J., Lehmann, W.D., Krueger, R., Bock, M., Huss, R., Seliger, C., Grone, H.J., Misselwitz, B., Semmler, W., Kiessling, F., 2005. Physical and biological characterization of super-paramagnetic iron oxide-and ultrasmall superparamagnetic iron oxide-labeled cells:a comparison. Invest Radio l40, 504–513.CrossRefGoogle Scholar
  237. Sykova, E., Jendelova, P., 2005. Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann N Y Acad Sci 1049, 146–160.PubMedCrossRefGoogle Scholar
  238. Sykova, E., Jendelova, P., 2006. Magnetic resonance tracking of transplanted stem cells in rat brain and spinal cord. Neurodegener Dis 3, 62–67.PubMedCrossRefGoogle Scholar
  239. Sykova, E., Jendelova, P., Urdzikova, L., Lesny, P., Hejcl, A., 2006. Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair. Cell Mol Neurobiol 26:1113–1129.PubMedCrossRefGoogle Scholar
  240. Tallheden, T., Nannmark, U., Lorentzon, M., Rakotonirainy, O., Soussi, B., Waagstein, F., Jeppsson, A., Sjogren-Jansson, E., Lindahl, A., Omerovic, E., 2006. In vivo MR imaging of magnetically labeled human embryonic stem cells. Life Sci 79, 999–1006.PubMedCrossRefGoogle Scholar
  241. Tan, W.B., Zhang, Y., 2005. Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications. J Biomed Mater Res A 75, 56–62.PubMedGoogle Scholar
  242. Terreno, E., Castelli, D.D., Cravotto, G., Milone, L., Aime, S., 2004. Ln(III)-DOTAMGly complexes: a versatile series to assess the determinants of the efficacy of paramagnetic chemical exchange saturation transfer agents for magnetic resonance imaging applications. Invest Radiol 39, 235–243.PubMedCrossRefGoogle Scholar
  243. Terreno, E., Geninatti Crich, S., Belfiore, S., Biancone, L., Cabella, C., Esposito, G., Manazza, A.D., Aime, S., 2006. Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons. Magn Reson Med 55, 491–497.PubMedCrossRefGoogle Scholar
  244. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., Jones, J.M., 1998. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.PubMedCrossRefGoogle Scholar
  245. Thorek, D.L., Chen, A.K., Czupryna, J., Tsourkas, A., 2006. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34, 23–38.PubMedCrossRefGoogle Scholar
  246. Tomita, S., Li, R.K., Weisel, R.D., Mickle, D.A., Kim, E.J., Sakai, T., Jia, Z.Q., 1999. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100, II247–256.PubMedGoogle Scholar
  247. Torrente, Y., Camirand, G., Pisati, F., Belicchi, M., Rossi, B., Colombo, F., El Fahime, M., Caron, N.J., Issekutz, A.C., Constantin, G., Tremblay, J.P., Bresolin, N., 2003. Identification of a putative pathway for the muscle homing of stem cells in a muscular dystrophy model. J Cell Biol 162, 511–520.PubMedCrossRefGoogle Scholar
  248. Torrente, Y., Tremblay, J.P., Pisati, F., Belicchi, M., Rossi, B., Sironi, M., Fortunato, F., ElFahime, M., D’Angelo, M.G., Caron, N.J., Constantin, G., Paulin, D., Scarlato, G., Bresolin, N., 2001. Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stemcells restores dystrophin in mdx mice. J Cell Biol1 52, 335–348.CrossRefGoogle Scholar
  249. Toyoda, K., Tooyama, I., Kato, M., Sato, H., Morikawa, S., Hisa, Y., Inubushi, T., 2004. Effective magnetic labeling of transplanted cells with HVJ-E for magnetic resonance imaging. Neuroreport 15, 589–593.PubMedCrossRefGoogle Scholar
  250. Trokowski, R., Zhang, S., Sherry, A.D., 2004. Cyclen-based phenylboronate ligands and their Eu3+ complexes for sensing glucose by MRI. Bioconjug Chem 15, 1431–1440.PubMedCrossRefGoogle Scholar
  251. Tyszka, J.M., Fraser, S.E., Jacobs, R.E., 2005. Magnetic resonance microscopy: recent advances and applications. Curr Opin Biotechnol 16, 93–99.PubMedCrossRefGoogle Scholar
  252. Vander Elst, L., Roch, A., Gillis, P., Laurent, S., Botteman, F., Bulte, J.W., Muller, R.N., 2002a. Dy-DTPA derivatives as relaxation agents for very high field MRI: the beneficial effect of slow water exchange on the transverse relaxivities. Magn Reson Med 47, 1121–1130.CrossRefGoogle Scholar
  253. Vander Elst, L., Zhang, S., Sherry, A.D., Laurent, S., Botteman, F., Muller, R.N., 2002b. Dy-complexes as high field T2 contrast agents: influence of water exchange rates. Acad Radiol 9 Suppl 2, S297–S299.CrossRefGoogle Scholar
  254. van Tilborg, G.A., Mulder, W.J., Chin, P.T., Storm, G., Reutelingsperger, C.P., Nicolay, K., Strijkers, G.J., 2006. Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells. Bioconjug Chem 17, 865–868.PubMedCrossRefGoogle Scholar
  255. Veiseh, O., Sun, C., Gunn, J., Kohler, N., Gabikian, P., Lee, D., Bhattarai, N., Ellenbogen, R., Sze, R., Hallahan, A., Olson, J., Zhang, M., 2005. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5, 1003–1008.PubMedCrossRefGoogle Scholar
  256. Velardo, M.J., Burger, C., Williams, P.R., Baker, H.V., Lopez, M.C., Mareci, T.H., White, T.E., Muzyczka, N., Reier, P.J., 2004. Patterns of gene expression reveal a temporally orchestrated wound healing response in the injured spinal cord. J Neurosci 24, 8562–8576.PubMedCrossRefGoogle Scholar
  257. Villringer, A., Rosen, B.R., Belliveau, J.W., Ackerman, J.L., Lauffer, R.B., Buxton, R.B., Chao, Y.S., Wedeen, V.J., Brady, T.J., 1988. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6, 164–174.PubMedCrossRefGoogle Scholar
  258. Voura, E.B., Jaiswal, J.K., Mattoussi, H., Simon, S.M., 2004. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10, 993–998.PubMedCrossRefGoogle Scholar
  259. Walczak, P., Kedziorek, D.A., Gilad, A.A., Lin, S., Bulte, J.W., 2005. Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med 54, 769–774.PubMedCrossRefGoogle Scholar
  260. Walter, G.A., Cahill, K.S., Huard, J., Feng, H., Douglas, T., Sweeney, H.L., Bulte, J.W., 2004. Noninvasive monitoring of stem cell transfer for muscle disorders. Magn Reson Med 51, 273–277.PubMedCrossRefGoogle Scholar
  261. Wang, J.F., Yang, Y., Wang, G., Min, J., Sullivan, M.F., Ping, P., Xiao, Y.F., Morgan, J.P., 2002. Embryonic stem cells attenuate viral myocarditis in murine model. Cell Transplant 11, 753–758.PubMedGoogle Scholar
  262. Wang, X., Ku, G., Wegiel, M.A., Bornhop, D.J., Stoica, G., Wang, L.V., 2004a. Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt Lett 29, 730–732.CrossRefGoogle Scholar
  263. Wang, Y., Xing, D., Zeng, Y., Chen, Q., 2004b. Photoacoustic imaging with deconvolution algorithm. Phys Med Biol 49, 3117–3124.CrossRefGoogle Scholar
  264. Ward, K.M., Aletras, A.H., Balaban, R.S., 2000. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143, 79–87.PubMedCrossRefGoogle Scholar
  265. Ward, K.M., Balaban, R.S., 2000. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 44, 799–802.PubMedCrossRefGoogle Scholar
  266. Warlow, C., Sudlow, C., Dennis, M., Wardlaw, J., Sandercock, P., 2003. Stroke. The Lancet 362, 1211–1224.CrossRefGoogle Scholar
  267. Watanabe, E., Smith, D.M., Jr., Delcarpio, J.B., Sun, J., Smart, F.W., Van Meter, C.H., Jr., Claycomb, W.C., 1998. Cardiomyocyte transplantation in a porcine myocardial infarction model. Cell Transplant 7, 239–246.PubMedCrossRefGoogle Scholar
  268. Watson, D.J., Walton, R.M., Magnitsky, S.G., Bulte, J.W., Poptani, H., Wolfe, J.H., 2006. Structure-specific patterns of neural stem cell engraftment after transplantation in the adult mouse brain. Hum Gene Ther 17, 693–704.PubMedCrossRefGoogle Scholar
  269. Weber, A., Pedrosa, I., Kawamoto, A., Himes, N., Munasinghe, J., Asahara, T., Rofsky, N.M., Losordo, D.W., 2004a. Magnetic resonance mapping of transplanted endothelial progenitor cells for therapeutic neovascularization in ischemic heart disease. Eur J Cardiothorac Surg 26, 137–143.CrossRefGoogle Scholar
  270. Weber, A., Pedrosa, I., Kawamoto, A., Himes, N., Munasinghe, J., Asahara, T., Rofsky, N.M., Losordo, D.W., 2004b. Magnetic resonance mapping of transplanted endothelial progenitor cells for therapeutic neovascularization in ischemic heart disease. Eur J Cardiothorac Surg 26, 137–143.CrossRefGoogle Scholar
  271. Weber, R., Ramos-Cabrer, P., Hoehn, M., 2006. Present status of magnetic resonance imaging and spectroscopy in animal stroke models. J Cereb Blood Flow Metab 26, 591–604.PubMedCrossRefGoogle Scholar
  272. Weissleder, R., Ntziachristos, V., 2003. Shedding light onto live molecular targets. Nat Med 9, 123–128.PubMedCrossRefGoogle Scholar
  273. Weller, H., 1993a. Colloidal semiconductor Q-particles – chemistry in the transition region between solid-state and molecules. Angewandte Chemie-International Edition in English 32, 41–53.CrossRefGoogle Scholar
  274. Weller, H., 1993b. Quantized semiconductor particles – a novel state of matter for materials science. Adv Mater 5, 88–95.CrossRefGoogle Scholar
  275. Weller, H., 1998. Quantum size colloids: from size-dependent properties of discrete particles to self-organized superstructures. Current Opinion in Colloid & Interface Science 3, 194–199.CrossRefGoogle Scholar
  276. Wernig, A., Zweyer, M., Irintchev, A., 2000. Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles. J Physiol 522 Pt 2, 333–345.Google Scholar
  277. Weston, S.A., Parish, C.R., 1990. New fluorescent dyes for lymphocyte migration studies. Analysis by flow cytometry and fluorescence microscopy. J Immunol Methods 133, 87–97.PubMedCrossRefGoogle Scholar
  278. Wirth, E.D., 3rd, Theele, D.P., Mareci, T.H., Anderson, D.K., Brown, S.A., Reier, P.J., 1992. In vivo magnetic resonance imaging of fetal cat neural tissue transplants in the adult cat spinal cord. J Neurosurg 76, 261–274.PubMedGoogle Scholar
  279. Woessner, D.E., Zhang, S., Merritt, M.E., Sherry, A.D., 2005. Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI. Magn Reson Med 53, 790–799.PubMedCrossRefGoogle Scholar
  280. Wu, J.C., Chen, I.Y., Sundaresan, G., Min, J.J., De, A., Qiao, J.H., Fishbein, M.C., Gambhir, S.S., 2003. Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108, 1302–1305.PubMedCrossRefGoogle Scholar
  281. Xiao, D., Xi, L., Yang, W., Fu, H., Shuai, Z., Fang, Y., Yao, J., 2003. Size-tunable emission from 1,3-diphenyl-5-(2-anthryl)-2-pyrazoline nanoparticles. J Am Chem Soc 125, 6740–6745.PubMedCrossRefGoogle Scholar
  282. Xu, H., Othman, S.F., Hong, L., Peptan, I.A., Magin, R.L., 2006. Magnetic resonance microscopy for monitoring osteogenesis in tissue-engineered construct in vitro. Phys Med Biol 51, 719–732.PubMedCrossRefGoogle Scholar
  283. Yang, H., Holloway, P.H., Santra, S., 2004. Water-soluble silica-overcoated CdS:Mn/ZnS semiconductor quantum dots. J Chem Phys 121, 7421–7426.PubMedCrossRefGoogle Scholar
  284. Yang, H.I., Santra, S., Walter, G., Holloway, P.H., 2006. GdIII-functionalized fluorescent quantum dots as multimodal imaging probes. Advanced Materials 18: 2890–2894.CrossRefGoogle Scholar
  285. Yin, T., Li, L., 2006. The stem cell niches in bone. J Clin Invest 116, 1195–1201.PubMedCrossRefGoogle Scholar
  286. Yoo, H., Juliano, R.L., 2000. Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Res 28, 4225–4231.PubMedCrossRefGoogle Scholar
  287. Zaheer, A., Lenkinski, R.E., Mahmood, A., Jones, A.G., Cantley, L.C., Frangioni, J.V., 2001. In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol 19, 1148–1154.PubMedCrossRefGoogle Scholar
  288. Zelivyanskaya, M.L., Nelson, J.A., Poluektova, L., Uberti, M., Mellon, M., Gendelman, H.E., Boska, M.D., 2003. Tracking superparamagnetic iron oxide labeled monocytes in brain by high-field magnetic resonance imaging. J Neurosci Res 73, 284–295.PubMedCrossRefGoogle Scholar
  289. Zhang, H.F., Maslov, K., Stoica, G., Wang, L.V., 2006. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol 24, 848–851.PubMedCrossRefGoogle Scholar
  290. Zhang, J.Z., 1997. Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: Effects of size and surface. Acc Chem Res 30, 423–429.CrossRefGoogle Scholar
  291. Zhang, R.L., Zhang, Z.G., Chopp, M., 2005. Neurogenesis in the adult ischemic brain: generation, migration, survival, and restorative therapy. Neuroscientist 11, 408–416.PubMedCrossRefGoogle Scholar
  292. Zhang, S., Merritt, M., Woessner, D.E., Lenkinski, R.E., Sherry, A.D., 2003a. PARACEST agents: modulating MRI contrast via water proton exchange. Acc Chem Res 36, 783–790.CrossRefGoogle Scholar
  293. Zhang, S., Trokowski, R., Sherry, A.D., 2003b. A paramagnetic CEST agent for imaging glucose by MRI. J Am Chem Soc 125, 15288–15289.CrossRefGoogle Scholar
  294. Zhang, Z., Jiang, Q., Jiang, F., Ding, G., Zhang, R., Wang, L., Zhang, L., Robin, A.M., Katakowski, M., Chopp, M., 2004. In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor. Neuroimage 23, 281–287.PubMedCrossRefGoogle Scholar
  295. Zhang, Z.G., Jiang, Q., Zhang, R., Zhang, L., Wang, L., Zhang, L., Arniego, P., Ho, K.L., Chopp, M., 2003c. Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann Neurol 53, 259–263.CrossRefGoogle Scholar
  296. Zhang, Z.G., Zhang, L., Jiang, Q., Chopp, M., 2002. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 90, 284–288.PubMedCrossRefGoogle Scholar
  297. Zhao, M., Kircher, M.F., Josephson, L., Weissleder, R., 2002. Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 13, 840–844.PubMedCrossRefGoogle Scholar
  298. Zhao, M., Weissleder, R., 2004. Intracellular cargo delivery using tat peptide and derivatives. Med Res Rev 24, 1–12.PubMedCrossRefGoogle Scholar
  299. Zheng, Q., Dai, H., Merritt, M.E., Malloy, C., Pan, C.Y., Li, W.H., 2005. A new class of macrocyclic lanthanide complexes for cell labeling and magnetic resonance imaging applications. J Am Chem Soc 127, 16178–16188.PubMedCrossRefGoogle Scholar
  300. Zhou, J., Wilson, D.A., Sun, P.Z., Klaus, J.A., Van Zijl, P.C., 2004. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn Reson Med 51, 945–952.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Glenn A. Walter
  • Swadeshmukul Santra
  • Bijoy Thattaliyath
  • Samuel C. Grant

There are no affiliations available

Personalised recommendations