Targeting Vascular Epitopes Using Quantum Dots

  • Dardo E. Ferrara
  • Charles Glaus
  • W. Robert Taylor
Part of the Fundamental Biomedical Technologies book series (FBMT, volume 102)


Fluorescent semiconductor quantum dots (Qdots) hold great potential for both ex vivo and in vivo molecular imaging. Traditional imaging with single-photon confocal microscopy and organic fluorophores poses several challenges for the visualization of vascular tissue, including autofluorescence, fluorophore crosstalk, and photobleaching. We will review a recently developed immunohistochemical (IHC) en face method that employs quantum dot bioconjugates and two-photon excitation laser scanning microscopy (TPELSM). These techniques improve contrast resolution and allow detailed cellular structures to be imaged without the common problem of vascular autofluorescence. It is especially useful for multicolor profiling of endothelial structures with only one excitation wavelength. Moreover, this is also a promising technique for mapping the expression of endothelial proteins and their relationship to flow dynamics. In addition, a more reliable fluorescence quantitation of endothelial signals will benefit the ex vivo testing of different interventions. By providing a bridge between in vitro and in vivo studies, this method may facilitate the development of novel drugs and specific multimodal molecular imaging agents.


Wall Shear Stress Atherosclerotic Lesion Molecular Imaging Arterioscler Thromb Vasc Biol Intercostal Artery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barry-Lane, P.A., Patterson, C., van der Merwe, M., Hu, Z., Holland, S.M., Yeh, E.T., Runge, M.S., 2001. p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J Clin Invest 108, 1513–1522.PubMedCrossRefGoogle Scholar
  2. Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P., 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016.PubMedCrossRefGoogle Scholar
  3. Cai, H., McNally, J.S., Weber, M., Harrison, D.G., 2004. Oscillatory shear stress upregulation of endothelial nitric oxide synthase requires intracellular hydrogen peroxide and CaMKII. J Mol Cell Cardiol 37, 121–125.PubMedCrossRefGoogle Scholar
  4. Cai, W., Shin, D.W., Chen, K., Gheysens, O., Cao, Q., Wang, S.X., Gambhir, S.S., Chen, X., 2006. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6, 669–676.PubMedCrossRefGoogle Scholar
  5. Chan, W.C., Nie, S., 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018.PubMedCrossRefGoogle Scholar
  6. Chappell, D.C., Varner, S.E., Nerem, R.M., Medford, R.M., Alexander, R.W., 1998. Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ Res 82, 532–539.PubMedGoogle Scholar
  7. Chen, J., Tung, C.H., Mahmood, U., Ntziachristos, V., Gyurko, R., Fishman, M.C., Huang, P.L., Weissleder, R., 2002. In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105, 2766–2771.PubMedCrossRefGoogle Scholar
  8. Cheng, C., van Haperen, R., de Waard, M., van Damme, L.C., Tempel, D., Hanemaaijer, L., van Cappellen, G.W., Bos, J., Slager, C.J., Duncker, D.J., van der Steen, A.F., de Crom, R., Krams, R., 2005. Shear stress affects the intracellular distribution of eNOS: direct demonstration by a novel in vivo technique. Blood 106, 3691–3698.PubMedCrossRefGoogle Scholar
  9. Dai, G., Kaazempur-Mofrad, M.R., Natarajan, S., Zhang, Y., Vaughn, S., Blackman, B.R., Kamm, R.D., Garcia-Cardena, G., Gimbrone, M.A., Jr., 2004. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci U S A 101, 14871–14876.Google Scholar
  10. De Keulenaer, G.W., Chappell, D.C., Ishizaka, N., Nerem, R.M., Alexander, R.W., Griendling, K.K., 1998. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ Res 82, 1094–1101.PubMedGoogle Scholar
  11. Denk, W., Strickler, J.H., Webb, W.W., 1990. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76.PubMedCrossRefGoogle Scholar
  12. Dobrucki, J.W., 2004. Confocal microscopy: quantitative analytical capabilities. Methods Cell Biol 75, 41–72.PubMedCrossRefGoogle Scholar
  13. Falk, E., 2006. Pathogenesis of atherosclerosis. J Am Coll Cardiol 47, C7–C12.PubMedCrossRefGoogle Scholar
  14. Fazio, S., Linton, M.F., 2001. Mouse models of hyperlipidemia and atherosclerosis. Front Biosci 6, D515–525.PubMedCrossRefGoogle Scholar
  15. Ferrara, D.E., Pierangeli, S.S., 2005. Diverse effects of statins on endothelial cells? Thromb Haemost 93, 186–188.PubMedGoogle Scholar
  16. Ferrara, D.E., Taylor, W.R., 2006. A P47 Phox-Dependent NADPH Oxidase is Not Essential for the in vivo Upregulation of Adhesion Molecules at Aortic Arch Areas Exposed to Altered Patterns of Shear Stress. Arterioscler Thromb Vasc Biol e42.Google Scholar
  17. Ferrara, D.E., Weiss, D., Carnell, P.H., Vito, R.P., Vega, D., Gao, X., Nie, S., Taylor, W.R., 2006. Quantitative 3D fluorescence technique for the analysis of en face preparations of arterial walls using quantum dot nanocrystals and two-photon excitation laser scanning microscopy. Am J Physiol Regul Integr Comp Physiol 290, R114–R123.PubMedGoogle Scholar
  18. Forstermann, U., Munzel, T., 2006. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113, 1708–1714.PubMedCrossRefGoogle Scholar
  19. Frangioni, J.V., 2006. Self-illuminating quantum dots light the way. Nat Biotechnol 24, 326–328.PubMedCrossRefGoogle Scholar
  20. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W., Nie, S., 2004. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22, 969–976.PubMedCrossRefGoogle Scholar
  21. Gao, X., Nie, S., 2003. Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol 21, 371–373.PubMedCrossRefGoogle Scholar
  22. Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., Nie, S., 2005. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16, 63–72.PubMedCrossRefGoogle Scholar
  23. Hajra,L.,Evans,A.I.,Chen,M., Hyduk,S.J., Collins,T., Cybulsky,M.I.,2000. The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci USA 97,9052–9057.PubMedCrossRefGoogle Scholar
  24. Hansson, G.K., 2005. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352, 1685–1695.PubMedCrossRefGoogle Scholar
  25. Henninger, D.D., Panes, J., Eppihimer, M., Russell, J., Gerritsen, M., Anderson, D.C., Granger, D.N., 1997. Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J Immunol 158, 1825–1832.PubMedGoogle Scholar
  26. Iiyama, K., Hajra, L., Iiyama, M., Li, H., DiChiara, M., Medoff, B.D., Cybulsky, M.I., 1999. Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res 85, 199–207.PubMedGoogle Scholar
  27. Jaffer, F.A., Libby, P., Weissleder, R., 2006. Molecular and cellular imaging of atherosclerosis: emerging applications. J Am Coll Cardiol 47, 1328–1338.PubMedCrossRefGoogle Scholar
  28. Jaffer, F.A., Weissleder, R., 2004. Seeing within: molecular imaging of the cardiovascular system. Circ Res 94, 433–445.PubMedCrossRefGoogle Scholar
  29. Jiang, W., Papa, E., Fischer, H., Mardyani, S., Chan, W.C., 2004. Semiconductor quantum dots as contrast agents for whole animal imaging. Trends Biotechnol 22, 607–609.PubMedCrossRefGoogle Scholar
  30. Khan, B.V., Parthasarathy, S.S., Alexander, R.W., Medford, R.M., 1995. Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Invest 95, 1262–1270.PubMedGoogle Scholar
  31. Kim, S., Lim, Y.T., Soltesz, E.G., De Grand, A.M., Lee, J., Nakayama, A., Parker, J.A., Mihaljevic, T., Laurence, R.G., Dor, D.M., Cohn, L.H., Bawendi, M.G., Frangioni, J.V., 2004. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22, 93–97.PubMedCrossRefGoogle Scholar
  32. Klinkner, A.M., Bugelski, P.J., Waites, C.R., Louden, C., Hart, T.K., Kerns, W.D., 1997. A novel technique for mapping the lipid composition of atherosclerotic fatty streaks by en face fluorescence microscopy. J Histochem Cytochem 45, 743–753.PubMedGoogle Scholar
  33. Lacoste, T.D., Michalet, X., Pinaud, F., Chemla, D.S., Alivisatos, A.P., Weiss, S., 2000. Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc Natl Acad Sci USA 97, 9461–9466.PubMedCrossRefGoogle Scholar
  34. Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W., Webb, W.W., 2003. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436.PubMedCrossRefGoogle Scholar
  35. Lee, J.C., Kassis, S., Kumar, S., Badger, A., Adams, J.L., 1999. p38 mitogen-activated protein kinase inhibitors–mechanisms and therapeutic potentials. Pharmacol Ther 82, 389–397.PubMedCrossRefGoogle Scholar
  36. Libby, P., 2002. Inflammation in atherosclerosis. Nature 420, 868–874.PubMedCrossRefGoogle Scholar
  37. Lutgens, E., Faber, B., Schapira, K., Evelo, C.T., van Haaften, R., Heeneman, S., Cleutjens, K.B., Bijnens, A.P., Beckers, L., Porter, J.G., Mackay, C.R., Rennert, P., Bailly, V., Jarpe, M., Dolinski, B., Koteliansky, V., de Fougerolles, T., Daemen, M.J., 2005. Gene profiling in atherosclerosis reveals a key role for small inducible cytokines: validation using a novel monocyte chemoattractant protein monoclonal antibody. Circulation 111, 3443–3452.PubMedCrossRefGoogle Scholar
  38. McGillicuddy, C.J., Carrier, M.J., Weinberg, P.D., 2001. Distribution of lipid deposits around aortic branches of mice lacking LDL receptors and apolipoprotein E. Arterioscler Thromb Vasc Biol 21, 1220–1225.PubMedCrossRefGoogle Scholar
  39. McVeigh, E.R., 2006. Emerging imaging techniques. Circ Res 98, 879–886.PubMedCrossRefGoogle Scholar
  40. Michalet, X., Kapanidis, A.N., Laurence, T., Pinaud, F., Doose, S., Pflughoefft, M., Weiss, S., 2003. The power and prospects of fluorescence microscopies and spectroscopies. Annu Rev Biophys Biomol Struct 32, 161–182.PubMedCrossRefGoogle Scholar
  41. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S., 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544.PubMedCrossRefGoogle Scholar
  42. Michalet, X., Pinaud, F.F., Lacoste, T.D., Dahan, M., Bruchez, M.P., Alivisatos, A.P., Weiss, S., 2001. Properties of Fluorescent Semiconductor Nanocrystals and their Application to Biological Labeling. Single Mol 2, 261–276.CrossRefGoogle Scholar
  43. Nerem, R.M., Alexander, R.W., Chappell, D.C., Medford, R.M., Varner, S.E., Taylor, W.R., 1998. The study of the influence of flow on vascular endothelial biology. Am J Med Sci 316, 169–175.PubMedCrossRefGoogle Scholar
  44. Pawley, J., 2000. The 39 steps: a cautionary tale of quantitative 3-D fluorescence microscopy. Biotechniques 28, 884–886, 888.PubMedGoogle Scholar
  45. Rubart, M., 2004. Two-photon microscopy of cells and tissue. Circ Res 95, 1154–1166.PubMedCrossRefGoogle Scholar
  46. Smith, A.M., Ruan, G., Rhyner, M.N., Nie, S., 2006. Engineering luminescent quantum dots for in vivo molecular and cellular imaging. Ann Biomed Eng 34, 3–14.PubMedCrossRefGoogle Scholar
  47. So, M.K., Xu, C., Loening, A.M., Gambhir, S.S., Rao, J., 2006. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24, 339–343.PubMedCrossRefGoogle Scholar
  48. Tangirala, R.K., Rubin, E.M., Palinski, W., 1995. Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J Lipid Res 36, 2320–2328.PubMedGoogle Scholar
  49. VanderLaan, P.A., Reardon, C.A., Getz, G.S., 2004. Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol 24, 12–22.PubMedCrossRefGoogle Scholar
  50. Zarins, C.K., Giddens, D.P., Bharadvaj, B.K., Sottiurai, V.S., Mabon, R.F., Glagov, S., 1983. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53, 502–514.PubMedGoogle Scholar
  51. Zhang, Q., Church, J.E., Jagnandan, D., Catravas, J.D., Sessa, W.C., Fulton, D., 2006. Functional relevance of Golgi-and plasma membrane-localized endothelial NO synthase in reconstituted endothelial cells. Arterioscler Thromb Vasc Biol 26, 1015–1021.PubMedCrossRefGoogle Scholar
  52. Zipfel, W.R., Williams, R.M., Webb, W.W., 2003. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21, 1369–1377.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dardo E. Ferrara
  • Charles Glaus
  • W. Robert Taylor

There are no affiliations available

Personalised recommendations