Investigating the Dynamics of Cellular Processes at the Single Molecule Level with Semiconductor Quantum Dots

  • Maxime Dahan
Part of the Fundamental Biomedical Technologies book series (FBMT, volume 102)


The unique optical properties of semiconductor quantum dots (QDs) make them a powerful tool for ultrasensitive biological detection. Thanks to their large extinction coefficient and photostability, QDs can be detected at the single molecule level with high signal-to-noise ratio. This enables new experiments in which individual QD-labeled biomolecules are tracked with nanometer accuracy as they move in their natural cellular habitats. The ability to observe single biomolecules is essential to account for the stochastic nature of biological processes and to obtain information that remains elusive for biochemical, genetic, and conventional imaging methods. In living cells, single QD imaging has already been used to unravel the diffusion properties of membrane receptors as well as to analyze the motion of intracellular molecular motors. When combined with new optical and biochemical techniques, QDs will contribute to advanced biological imaging at the molecular scale and allow new studies on the dynamics of cellular processes.


Single Molecule Point Spread Function Glycine Receptor Single Molecule Level Single Molecule Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alivisatos, P., 2004. The use of nanocrystals in biological detection. Nat Biotechnol 22, 47–52.PubMedCrossRefGoogle Scholar
  2. Bobroff, N., 1986 Position measurement with a resolution and noise limited instrument. Rev Sci Instrum 57, 1152–1157.CrossRefGoogle Scholar
  3. Bonneau, S., Cohen, L., Dahan, M., 2004. A multiple target approach for single quantum dot tracking, Proceedings of the IEEE International Symposium on Biological Imaging (ISBI 2004), p. 664.Google Scholar
  4. Bonneau, S., Dahan,M., Cohen, L.D., 2005. Single quantum dot tracking based on perceptual grouping using minimal paths in a spatiotemporal volume. IEEE Trans Image Process 14, 1384–1395.PubMedCrossRefGoogle Scholar
  5. Bray, D., 1998. Signaling complexes: biophysical constraints on intracellular communication. Annu Rev Biophys Biomol Struct 27, 59–75.PubMedCrossRefGoogle Scholar
  6. Brokmann, X., Hermier, J.P., Messin, G., Desbiolles, P., Bouchaud, J.P., Dahan, M., 2003. Statistical aging and nonergodicity in the fluorescence of single nanocrystals. Phys Rev Lett 90, 120601–120604.PubMedCrossRefGoogle Scholar
  7. Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P., 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016.PubMedCrossRefGoogle Scholar
  8. Chan W.C., Nie, S., 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018.PubMedCrossRefGoogle Scholar
  9. Chen, F., Gerion, D., 2004. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. NanoLett 4, 1827–1832.Google Scholar
  10. Chen, I., Ting, A.Y., 2005. Site-specific labeling of proteins with small molecules in live cells. Curr Opin Biotechnol 16, 35–40.PubMedCrossRefGoogle Scholar
  11. Choquet, D., Triller, A., 2003. The role of receptor diffusion in the organization of the postsynaptic membrane. Nat Rev Neurosci 4, 251–65.PubMedCrossRefGoogle Scholar
  12. Courty, S., Luccardini, C., Bellaiche, Y., Cappello, G., Dahan, M., 2006. Tracking individual kinesin motors in living cells using single quantum dot imaging. NanoLett 6, 1491–1495.Google Scholar
  13. Dahan, M., Levi, S., Luccardini, C., Rostaing, P., Riveau, B., Triller, A., 2003. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445.PubMedCrossRefGoogle Scholar
  14. Derfus, A.M., Chan, W.C.W., Bhatia, S.N., 2004. Intracellular delivery of quantum dots for live cells experiments and organelles tracking. Adv Mat 16, 961–966.CrossRefGoogle Scholar
  15. Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., Libchaber, A., 2002. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762.PubMedCrossRefGoogle Scholar
  16. Empedocles, S., Bawendi, M., 1999. Spectroscopy of Single CdSe Nanocrystallites. Acc Chem Res 32, 389–396.CrossRefGoogle Scholar
  17. Giepmans, B.N., Adams, S.R., Ellisman, M.H., Tsien, R.Y., 2006. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224.PubMedCrossRefGoogle Scholar
  18. Giepmans, B.N., Deerinck, T.J., Smarr, B.L., Jones, Y.Z., Ellisman, M.H., 2005. Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots. Nat Methods 2, 743–749.PubMedCrossRefGoogle Scholar
  19. Groc, L., Heine, M., Cognet, L., Brickley, K., Stephenson, F.A., Lounis, B., Choquet, D., 2004. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat Neurosci 7, 695–696.PubMedCrossRefGoogle Scholar
  20. Ha, T., Ting, A.Y., Liang, J., Caldwell, W.B., Deniz, A.A., Chemla, D.S., Schultz, P.G., Weiss, S., 1999. Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. Proc Natl Acad Sci USA 96, 893–898.PubMedCrossRefGoogle Scholar
  21. Harms, G.S., Cognet, L., Lommerse, P.H., Blab, G.A., Kahr, H., Gamsjager, R., Spaink, H.P., Soldatov, N.M., Romanin, C., Schmidt,T., 2001. Single-molecule imaging of l-type Ca(2+) channels in live cells. Biophys J 81, 2639–2646.PubMedGoogle Scholar
  22. Howard, J., 2001. Mechanics of motor proteins and the cytoskeleton, Sinauer.Google Scholar
  23. Iino, R., Koyama, I., Kusumi, A., 2001. Single molecule imaging of green fluorescent proteins in living cells, E-cadherin forms oligomers on the free cell surface. Biophys J 80, 2667–2677Google Scholar
  24. Kim, S., Lim, Y.T., Soltesz, E.G., De Grand, A.M., Lee, J., Nakayama A., Parker, J.A., Mihaljevic, T., Laurence, R.G., Dor, D.M., Cohn, L.H., Bawendi, M.G., Frangioni, J.V., 2004. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22, 93–97.PubMedCrossRefGoogle Scholar
  25. Kholodenko, B.N., 2006. Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7, 165–176.PubMedCrossRefGoogle Scholar
  26. Lidke, D.S., Nagy, P., Heintzmann, R., Arndt-Jovin, D.J., Post, J.N., Grecco, H.E., Jares-Erijman, E.A., Jovin, T.M., 2004. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22, 198–203.PubMedCrossRefGoogle Scholar
  27. Lippincott-Schwartz, J., Patterson, G.H., 2003. Development and use of fluorescent protein markers in living cells. Science 300, 87–91.PubMedCrossRefGoogle Scholar
  28. Lounis, B., Bechtel, H.A., Gerion, D., Alivisatos, P., Moerner, W.E., 2000. Photon antibunching in single quantum dot fluorescence. Chem Phys Lett 329, 399–406.CrossRefGoogle Scholar
  29. Lu, H.P., Xun, L., Xie, X.S., 1998. Single-molecule enzymatic dynamics. Science 282, 1877–1882.PubMedCrossRefGoogle Scholar
  30. Marguet, D., Lenne, P.F., Rigneault, H., Tao, H.E., 2006. Dynamics in the plasma membrane, how to combine fluidity and order. EMBO J 25, 3446–3457.PubMedCrossRefGoogle Scholar
  31. Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H., 2005. Quantum dot bioconjugates for imaging, labeling and sensing. Nat Materials 4, 435–446.CrossRefGoogle Scholar
  32. Meijering, E., Smal, I., Danuser, G., 2006. Tracking in molecular bioimaging. IEEE Signal Processing Magazine 23, 46–53.CrossRefGoogle Scholar
  33. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S., 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544.PubMedCrossRefGoogle Scholar
  34. Moerner, W.E., Orrit, M., 1999. Illuminating single molecules in condensed matter. Science 283, 1670–1676.PubMedCrossRefGoogle Scholar
  35. Murase, K., Fujiwara, T., Umemura, Y., Suzuki, K., Iino, R., Yamashita, H., Saito, M., Murakoshi, H., Ritchie, K., Kusumi, A., 2004. Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys J. 86, 4075–4093.PubMedCrossRefGoogle Scholar
  36. Nirmal, M., Dabbousi, B.O., Bawendi, M.G., Macklin, J.J., Trautman, J.K., Harris, T.D., Brus, L.E., 1996. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804.CrossRefGoogle Scholar
  37. Noji, H., Yasuda, R., Yoshida, M., Kinosita, K. Jr., 1997. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302.PubMedCrossRefGoogle Scholar
  38. Ober, R.J., Ram, S., Ward, E.S., 2004. Localization accuracy in single-molecule microscopy. Biophys J 86, 1185–1200.PubMedGoogle Scholar
  39. Okada, C.Y., Rechsteiner, M., 1982. Introduction of macromolecules into cultured mammalian cells by osmotic lysis of pinocytic vesicles. Cell 29, 33–41.PubMedCrossRefGoogle Scholar
  40. Saxton, M.J., Jacobson, K., 1997. Single-particle tracking, applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26, 373–399.PubMedCrossRefGoogle Scholar
  41. Schutz, G.J., Kada, G., Pastushenko, V.P., Schindler, H., 2000. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19, 892–901.PubMedCrossRefGoogle Scholar
  42. Shav-Tal, Y., Singer, R.H., Darzacq, X., 2004. Imaging gene expression in single living cells. Nat Rev Mol Cell Biol 5, 855–861.PubMedCrossRefGoogle Scholar
  43. Shimizu, K.T., Neuhauser, R.G., Leatherdale, C.A., Empedocles, S.A., Woo, W.K., Bawendi, M.G., 2001. Blinking statistics in single semiconductor nanocrystal quantum dots. Phys Rev B 63, 205311–205316.CrossRefGoogle Scholar
  44. Singer, S.J., Nicolson, G.L., 1972. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731.PubMedCrossRefGoogle Scholar
  45. Tardin, C., Cognet, L., Bats, C., Lounis, B., Choquet, D., 2003. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J. 22, 4656–4665.PubMedCrossRefGoogle Scholar
  46. Thompson, R.E., Larson, D.R., Webb, W.W., 2002. Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82, 2775–2783.PubMedCrossRefGoogle Scholar
  47. Tsien, R.Y., 2005. Building and breeding molecules to spy on cells and tumors. FEBS Lett 579, 927–932.PubMedCrossRefGoogle Scholar
  48. Ueda, M., Sako, Y., Tanaka, T., Devreotes, P., Yanagida, T., 2001. Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science 294, 864–867.PubMedCrossRefGoogle Scholar
  49. Yildiz, A., Forkey, J.N., McKinney, S.A., Ha, T., Goldman, Y.E., Selvin, P.R., 2003. Myosin V walks hand-over-hand, single fluorophore imaging with 1. 5-nm localization. Science 300, 2061–2065PubMedCrossRefGoogle Scholar
  50. Verkman, A., 2002. Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci 27, 27–33.PubMedCrossRefGoogle Scholar
  51. Weiss, S., 1999. Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683.PubMedCrossRefGoogle Scholar
  52. Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., Bruchez, M.P., 2003. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21, 41–46.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Maxime Dahan

There are no affiliations available

Personalised recommendations