MR Lymphangiography Using Nano-Sized Paramagnetic Contrast Agents with Dendrimer Cores

  • Hisataka Kobayashi
Part of the Fundamental Biomedical Technologies book series (FBMT, volume 102)


Imaging of the lymphatic system is difficult because its channels and lymph nodes are small and not directly accessible. Currently, two clinical methods, the direct lymphangiography and the lymphoscintigraphy, are used to visualize parts of the human lymphatic system, but have significant limitations. Nano-sized contrast agents have recently been evaluated to be advantageous for visualization of the lymphatic system because of their appropriate physical sizes and the potential of signal amplification. In this review, the magnetic resonance lymphangiography using a series of nano-sized paramagnetic contrast agents, gadolinium labeled dendrimers, is discussed focusing on the synthetic method, their pharmacokinetic characteristics for selection of appropriate agents, and applications for visualization of various lymphatic disorders in mouse models.


Contrast Agent Sentinel Lymph Node Sentinel Lymph Node Biopsy Lymphatic Vessel Magnetic Resonance Imaging Contrast Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alazraki, N.P., Styblo, T., Grant, S.F., Cohen, C., Larsen, T., Aarsvold, J.N. 2000. Sentinel node staging of early breast cancer using lymphoscintigraphy and the intraoperative gamma-detecting probe. Semin Nucl Med 30, 56–64.PubMedCrossRefGoogle Scholar
  2. Alazraki, N.P., Styblo, T., Grant, S.F., Cohen, C., Larsen, T., Waldrop, S., Aarsvold, J.N. 2001. Sentinel node staging of early breast cancer using lymphoscintigraphy and the intraoperative gamma detecting probe. Radiol Clin North Am 39, 947–956.PubMedCrossRefGoogle Scholar
  3. Bass, S.S., Cox, C.E., Ku, N.N., Berman, C., Reintgen, D.S. 1999. The role of sentinel lymph node biopsy in breast cancer. J Am Coll Surg 189, 183–194.PubMedCrossRefGoogle Scholar
  4. Bryant, L.H., Jr., Brechbiel, M.W., Wu, C., Bulte, J.W., Herynek, V., Frank, J.A. 1999. Synthesis and relaxometry of high-generation (G = 5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. J Magn ResonImaging 9, 348–352.CrossRefGoogle Scholar
  5. Dowlatshahi, K., Fan, M., Snider, H.C., Habib, F.A. 1997. Lymph node micrometastases from breast carcinoma: reviewing the dilemma. Cancer 80, 1188–1197.PubMedCrossRefGoogle Scholar
  6. Fisher, B., Bauer, M., Wickerham, D.L., Redmond, C.K., Fisher, E.R. 1983. Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update. Cancer 52, 1551–1557.Google Scholar
  7. Fujimoto, Y., Okuhata, Y., Tyngi, S., Namba, Y., Oku, N. 2000. Magnetic resonance lymphography of profundus lymph nodes with liposomal gadolinium-diethylenetriamine pentaacetic acid. Biol Pharm Bull 23, 97–100.PubMedGoogle Scholar
  8. Giuliano, A.E., Jones, R.C., Brennan, M., Statman, R. 1997. Sentinel lymphadenectomy in breast cancer. J Clin Oncol 15, 2345–2350.PubMedGoogle Scholar
  9. Goldhirsch, A., Glick, J.H., Gelber, R.D., Coates, A.S., Senn, H.J. 2001. Meeting highlights: International Consensus Panel on the Treatment of Primary Breast Cancer. Seventh International Conference on Adjuvant Therapy of Primary Breast Cancer. J Clin Oncol 19, 3817–3827.PubMedGoogle Scholar
  10. Guller, U., Nitzsche, E., Moch, H., Zuber, M. 2003. Is Positron Emission Tomography an Accurate Non-invasive Alternative to Sentinel Lymph Node Biopsy in Breast Cancer Patients? J Natl Cancer Inst 2003; 95: 95, 1040–1043.Google Scholar
  11. Harika, L., Weissleder, R., Poss, K., Zimmer, C., Papisov, M.I., Brady, T.J. 1995. MR lymphography with a lymphotropic T1-type MR contrast agent: Gd-DTPA-PGM. Magn Reson Med 33, 88–92.PubMedCrossRefGoogle Scholar
  12. Kern, K.A. 2001. Breast lymphatic mapping using subareolar injections of blue dye and radiocolloid: illustrated technique. J Am Coll Surg 192, 545–550.PubMedCrossRefGoogle Scholar
  13. Kobayashi, H., Brechbiel, M.W. 2003. Gadolinium-based macromolecular MRI contrast agents. Mol Imag 2, 1–10.CrossRefGoogle Scholar
  14. Kobayashi, H., Brechbiel, M.W. 2004. Dendrimer-based nanosized MRI contrast agents. Curr Pharm Biotechnol 5, 539–549.PubMedCrossRefGoogle Scholar
  15. Kobayashi, H., Brechbiel, M.W. 2005. Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev 57, 2271–2286.PubMedCrossRefGoogle Scholar
  16. Kobayashi, H., Kawamoto, S., Bernardo, M., Brechbiel, M.W., Knopp, M.V., Choyke, P.L. 2006. Delivery of gadolinium-labeled nanoparticles to the sentinel lymph node: comparison of the sentinel node visualization and estimations of intra-nodal gadolinium concentration by the magnetic resonance imaging. J Control Release 111, 343–351.PubMedCrossRefGoogle Scholar
  17. Kobayashi, H., Kawamoto, S., Brechbiel, M.W., Bernardo, M., Sato, N., Waldmann, T.A., Tagaya, Y., Choyke, P.L. 2005. Detection of lymph node involvement in hematologic malignancies using micromagnetic resonance lymphangiography with a gadolinumlabeled dendrimer nanoparticle. Neoplasia 7, 984–991.PubMedCrossRefGoogle Scholar
  18. Kobayashi, H., Kawamoto, S., Choyke, P.L., Sato, N., Knopp, M.V., Star, R.A., Waldmann, T.A., Tagaya, Y., Brechbiel, M.W. 2003a. Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography. Magn Reson Med 50, 758–766.CrossRefGoogle Scholar
  19. Kobayashi, H., Kawamoto, S., Jo, S., Bryant, L.H., Jr., Brechbiel, M.W., Star, R.A. 2003b. Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug Chem 14, 388–394.CrossRefGoogle Scholar
  20. Kobayashi, H., Kawamoto, S., Saga, T., Sato, N., Hiraga, A., Ishimori, T., Akita, Y., Mamede, M.H., Konishi, J., Togashi, K., Brechbiel, M.W. 2001a. Novel liver macromolecular MR contrast agent with a polypropylenimine diaminobutyl dendrimer core: comparison to the vascular MR contrast agent with the polyamidoamine dendrimer core. Magn Reson Med 46, 795–802.CrossRefGoogle Scholar
  21. Kobayashi, H., Kawamoto, S., Saga, T., Sato, N., Hiraga, A., Konishi, J., Togashi, K., Brechbiel, M.W. 2001b. Micro-MR angiography of normal and intratumoral vessels in mice using dedicated intravascular MR contrast agents with high generation of polyamidoamine dendrimer core: reference to pharmacokinetic properties of dendrimerbased MR contrast agents. J Magn Reson Imag 14, 705–713.CrossRefGoogle Scholar
  22. Kobayashi, H., Kawamoto, S., Sakai, Y., Choyke, P.L., Star, R.A., Brechbiel, M.W., Sato, N., Tagaya, Y., Morris, J.C., Waldmann, T.A. 2004. Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J Natl Cancer Inst 96, 703–708.PubMedCrossRefGoogle Scholar
  23. Kobayashi, H., Kawamoto, S., Star, R.A., Waldmann, T.A., Tagaya, Y., Brechbiel, M.W. 2003c. Micro-magnetic resonance lymphangiography in mice using a novel dendrimerbased magnetic resonance imaging contrast agent. Cancer Res 63, 271–276.Google Scholar
  24. Kobayashi, H., Saga, T., Kawamoto, S., Sato, N., Hiraga, A., Ishimori, T., Konishi, J., Togashi, K., Brechbiel, M.W. 2001c. Dynamic micro-magnetic resonance imaging of liver micrometastasis in mice with a novel liver macromolecular magnetic resonance contrast agent DAB-Am64-(1B4M-Gd)(64). Cancer Res 61, 4966–4970.Google Scholar
  25. Kobayashi, H., Sato, N., Hiraga, A., Saga, T., Nakamoto, Y., Ueda, H., Konishi, J., Togashi, K., Brechbiel, M.W. 2001d. 3D-micro-MR angiography of mice using macromolecular MR contrast agents with polyamidoamine dendrimer core with references to their pharmacokinetic properties. Magn Reson Med 45, 454–460.CrossRefGoogle Scholar
  26. Kobayashi, H., Sato, N., Kawamoto, S., Saga, T., Hiraga, A., Haque, T.L., Ishimori, T., Konishi, J., Togashi, K., Brechbiel, M.W. 2001e. Comparison of the macromolecular MR contrast agents with ethylenediamine-core versus ammonia-core generation-6 polyamidoamine dendrimer. Bioconjug Chem 12, 100–107.CrossRefGoogle Scholar
  27. Misselwitz, B., Platzek, J., Raduchel, B., Oellinger, J.J., Weinmann, H.J. 1999. Gadofluorine 8: initial experience with a new contrast medium for interstitial MR lymphography. Magma 8, 190–195.PubMedCrossRefGoogle Scholar
  28. Nawaz, M.K., Hamad, M.M., Abdel-Dayem, H.M., Sadek, S., Eklof, B.G. 1990. Tc-99m human serum albumin lymphoscintigraphy in lymphedema of the lower extremities. Clin Nucl Med 15, 794–799.PubMedCrossRefGoogle Scholar
  29. Perrymore, W.D., Harolds, J.A. 1996. Technetium-99m-albumin colloid lymphoscintigraphy in postoperative lymphocele. J Nucl Med 37, 1517–1518.PubMedGoogle Scholar
  30. Silvestri, R.C., Huseby, J.S., Rughani, I., Thorning, D., Culver, B.H. 1980. Respiratory distress syndrome from lymphangiography contrast medium. Am Rev Respir Dis 122, 543–549.PubMedGoogle Scholar
  31. Staatz, G., Spuntrup, E., Buecker, A., Misselwitz, B., Gunther, R.W. 2002. T1-weighted MR-lymphography after intramammary administration of Gadomer-17 in pigs. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174, 29–32.PubMedCrossRefGoogle Scholar
  32. Suga, K., Yuan, Y., Ogasawara, N., Okada, M., Matsunaga, N. 2003. Localization of breast sentinel lymph nodes by MR lymphography with a conventional gadolinium contrast agent. Preliminary observations in dogs and humans. Acta Radiol 44, 35–42.PubMedCrossRefGoogle Scholar
  33. Sugaya, M., Watanabe, T., Yang, A., Starost, M.F., Kobayashi, H., Atkins, A.M., Borris, D.L., Hanan, E.A., Schimel, D., Bryant, M.A., et al. 2005. Lymphatic dysfunction in transgenic mice expressing KSHV k-cyclin under the control of the VEGFR-3 promoter. Blood 105, 2356–2363.PubMedCrossRefGoogle Scholar
  34. Tomalia, D.A., Naylor, A.M., Goddard III, W.A. 1990. Starburst dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem-Int Ed 29, 138–175.CrossRefGoogle Scholar
  35. Torchia, M.G., Misselwitz, B. 2002. Combined MR lymphangiography and MR imaging-guided needle localization of sentinel lymph nodes using Gadomer-17. Am J Roentgenol 179, 1561–1565.Google Scholar
  36. Torchia, M.G., Nason, R., Danzinger, R., Lewis, J.M., Thliveris, J.A. 2001. Interstitial MR lymphangiography for the detection of sentinel lymph nodes. J Surg Oncol 78, 151–156.PubMedCrossRefGoogle Scholar
  37. Veronesi, U., Galimberti, V., Zurrida, S., Pigatto, F., Veronesi, P., Robertson, C., Paganelli, G., Sciascia, V., Viale, G. 2001. Sentinel lymph node biopsy as an indicator for axillary dissection in early breast cancer. Eur J Cancer 37, 454–458.PubMedCrossRefGoogle Scholar
  38. Wiener, E.C., Brechbiel, M.W., Brothers, H., Magin, R.L., Gansow, O.A., Tomalia, D.A., Lauterbur, P.C. 1994. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31, 1–8.PubMedCrossRefGoogle Scholar
  39. Wu, C., Brechbiel, M.W., Kozak, R.W., Gansow, O.A. 1994. Metal-chelate-dendrimerantibody constructs for use in radioimmunotherapy and imaging. Bioorg Med Chem Lett 4, 449–454.CrossRefGoogle Scholar
  40. Yordanov, A.T., Kobayashi, H., English, S.J., Reijnders, K., Milenic, D., Krishna, M.C., Mitchell, J.B., Brechbiel, M.W. 2003. Gadolinium-labeled dendrimers as biometric nanoprobes to detect vascular permeability. J Mater Chem 13, 1523–1525.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hisataka Kobayashi

There are no affiliations available

Personalised recommendations