The Negative Role of IDS in Osteoclastogenesis

  • Junwon Lee
  • Seoung-Hoon Lee
  • Yongwon Choi
  • Nacksung Kim
Part of the Advances in Experimental Medicine and Biology book series (volume 602)

Osteoclasts play an important role in bone metabolism by resorbing the bone matrix. These cells originate from hematopoietic precursors and share a common progenitor with macrophages and dendritic cells (DCs). Two essential cytokines, macrophage colony-stimulating factor (M-CSF) and TRANCE (also called RANKL, OPGL, and ODF), enable osteoclast differentiation from their monocyte/macrophage lineage precursors (Suda, Takahashi, Udagawa, et al. 1999; Yasuda, Shima, Nakagawa et al. 1998; Lacey, Timms, Tan, et al. 1998).

TRANCE, a TNF family member, supports osteoclast differentiation, survival, and activation. Binding of TRANCE to its receptor, receptor activator of nuclear factor κB (RANK), activates multiple signaling pathways mediated by TNF receptor-associated factors (TRAFs), including NF-κB, c-Jun N-terminal kinase (JNK), p38 MAP kinase, extracellular signal-related kinase (ERK), and AKT (Lee and Kim 2003; Boyle, Simonet and Lacey 2003).

It has been shown that TRANCE induces activation and/or induction of transcription factors such as Mitf, PU.1, and NFATc1 (Boyle, Simonet and Lacey 2003; Teitelbaum 2000; Teitelbaum and Ross 2003). Mitf is known to be important for osteoclastogenesis in vitro and in vivo (Holtrop, Cox, Eilon, et al. 1981; Thesingh and Scherft 1985; Luchin, Purdom, Murphy, et al. 2000).TRANCE activates Mitf via the MKK6/p38 signaling cascade. Subsequently, activated Mitf induces the expression of target genes, including TRAP, cathepsin K, and OSCAR, which are important for osteoclast differentiation or function (Luchin, Purdom, Murphy, et al. 2000; Motyckova, Weilbaecher, Horstmann, et al. 2001; Mansky, Sankar, Han, et al. 2002; So, Rho, Jeong, et al. 2003; Kim, Takami, Rho, et al. 2002), by binding to the canonical E-box sequence in the promoter region of those genes.


Phagocytic Activity Osteoclast Differentiation bHLH Transcription Factor Regulate Osteoclast Differentiation OSCAR Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, K.L., K.A. Smith, K. Conners, S.R. McKercher, R.A. Maki, and B.E. Torbett, Myeloid development is selectively disrupted in PU.1 null mice. Blood 91(10): 3702–3710.Google Scholar
  2. Benezra, R., R.L. Davis, D. Lockshon, D.L. Turner, and H. Weintraub. 1990. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61(1): 49–59.CrossRefPubMedGoogle Scholar
  3. Boyle, W.J., W.S. Simonet, and D.L. Lacey. 2003. Osteoclast differentiation and activation. Nature 423(6937): 337–342.CrossRefPubMedGoogle Scholar
  4. Hacker, C., R.D. Kirsch, X.S. Ju, T. Hieronymus, T.C. Gust, C. Kuhl, T. Jorgas, S.M. Kurz, S. Rose-John, Y. Yokota, and M. Zenke. 2003. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 4(4): 380–386.CrossRefPubMedGoogle Scholar
  5. Holtrop, M.E., K.A. Cox, G. Eilon, H.A. Simmons, and L.G. Raisz. 1981. The ultrastructure of osteoclasts in microphthalmic mice. Metab Bone Dis Relat Res 3(2): 123–129.CrossRefPubMedGoogle Scholar
  6. Jen, Y., H. Weintraub, and R. Benezra. 1992. Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev 6(8): 1466–1479.CrossRefPubMedGoogle Scholar
  7. Kim, N., M. Takami, J. Rho, R. Josien, and Y. Choi. 2002. A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J Exp Med 195(2): 201–209.PubMedGoogle Scholar
  8. Kim, K., J.H. Kim, J. Lee, H.M. Jin, S.H. Lee, D.E. Fisher, H. Kook, K.K. Kim, Y. Choi, and N. Kim. 2005. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem 280(42): 35209–35216.CrossRefPubMedGoogle Scholar
  9. Kim, Y., K. Sato, M. Asagiri, I. Morita, K. Soma, and H. Takayanagi. 2005. Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J Biol Chem 280(38): 32905–32913.CrossRefPubMedGoogle Scholar
  10. Koga, T., M. Inui, K. Inoue, S. Kim, A. Suematsu, E. Kobayashi, T. Iwata, H. Ohnishi, T. Matozaki, T. Kodama, T. Taniguchi, H. Takayanagi and T. Takai. 2004. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428(6984): 758–763.CrossRefPubMedGoogle Scholar
  11. Kreider, B.L., R. Benezra, G. Rovera, and T. Kadesch. 1992. Inhibition of myeloid differentiation by the helix-loop-helix protein Id. Science 255(5052): 1700–1702.CrossRefPubMedGoogle Scholar
  12. Lacey, D.L., E. Timms, H.L. Tan, M.J. Kelley, C.R. Dunstan, T. Burgess, R. Elliott, A. Colombero, G. Elliott, S. Scully, H. Hsu, J. Sullivan, N. Hawkins, E. Davy, C. Capparelli, A. Eli, Y.X. Qian, S. Kaufman, I. Sarosi, V. Shalhoub, G. Senaldi, J. Guo, J. Delaney, and W.J. Boyle. 1998. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2): 165–176.CrossRefPubMedGoogle Scholar
  13. Lasorella, A., T. Uo, and A. Iavarone. 2001. Id proteins at the cross-road of development and cancer. Oncogene 20(58): 8326–8333.CrossRefPubMedGoogle Scholar
  14. Lee, Z.H., and H.H. Kim. 2003. Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem Biophys Res Commun 305(2): 211–214.CrossRefPubMedGoogle Scholar
  15. Le Jossic, C., G.P. Ilyin, P. Loyer, D. Glaise, S. Cariou, and C. Guguen-Guillouzo. 1994. Expression of helix-loop-helix factor Id-1 is dependent on the hepatocyte proliferation and differentiation status in rat liver and in primary culture. Cancer Res 54(23): 6065–6068.PubMedGoogle Scholar
  16. Luchin, A., G. Purdom, K. Murphy, M.Y. Clark, N. Angel, A.I. Cassady, D.A. Hume, and M.C. Ostrowski. 2000. The microphthalmia transcription factor regulates expression of the tartrate-resistant acid phosphatase gene during terminal differentiation of osteoclasts. J Bone Miner Res 15(3): 451–460.CrossRefPubMedGoogle Scholar
  17. Luchin, A., S. Suchting, T. Merson, T.J. Rosol, D.A. Hume, A.I. Cassady, and M.C. Ostrowski. 2001. Genetic and physical interactions between Microphthalmia transcription factor and PU.1 are necessary for osteoclast gene expression and differentiation. J Biol Chem 276(39): 36703–36710.CrossRefPubMedGoogle Scholar
  18. Mansky, K.C., U. Sankar, J. Han, and M.C. Ostrowski. 2002. Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J Biol Chem 277(13): 11077–11083.CrossRefPubMedGoogle Scholar
  19. Massari M.E., and C. Murre. 2000. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms, Mol Cell Biol 20(2): 429–440.CrossRefPubMedGoogle Scholar
  20. Matsumoto, M., M. Kogawa, S. Wada, H. Takayanagi, M. Tsujimoto, S. Katayama, K. Hisatake, and Y. Nogi. 2004. Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J Biol Chem 279(44): 45969–45979.CrossRefPubMedGoogle Scholar
  21. Matsuo, K., D.L. Galson, C. Zhao, L. Peng, C. Laplace, K.Z. Wang, M.A. Bachler, H. Amano, H. Aburatani, H. Ishikawa, and E.F. Wagner. 2004. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem 279(25): 26475–26480.CrossRefPubMedGoogle Scholar
  22. McKercher, S.R., B.E. Torbett, K.L. Anderson, G.W. Henkel, D.J. Vestal, H. Baribault, M. Klemsz, A.J. Feeney, G.E. Wu, C.J. Paige, and R.A. Maki. 1996. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. Embo J 15(20): 5647–5658.PubMedGoogle Scholar
  23. Moore, K.J. 1995. Insight into the microphthalmia gene. Trends Genet 11(11): 442–448.CrossRefPubMedGoogle Scholar
  24. Motyckova, G., K.N. Weilbaecher, M. Horstmann, D.J. Rieman, D.Z. Fisher, and D.E. Fisher. 2001. Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family. Proc Natl Acad Sci U S A 98(10): 5798–5803.CrossRefPubMedGoogle Scholar
  25. Norton, J.D. 2000. ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 113 (Pt 22): 3897–3905.PubMedGoogle Scholar
  26. Scott, E.W., M.C. Simon, J. Anastasi, and H. Singh. 1994. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages, Science 265(5178): 1573–1577.CrossRefPubMedGoogle Scholar
  27. Sikder, H.A., M.K. Devlin, S. Dunlap, B. Ryu, and R.M. Alani. 2003. Id proteins in cell growth and tumorigenesis. Cancer Cell 3(6): 525–530.CrossRefPubMedGoogle Scholar
  28. So, H., J. Rho, D. Jeong, R. Park, D.E. Fisher, M.C. Ostrowski, Y. Choi, and N. Kim. 2003. Microphthalmia transcription factor and PU.1 synergistically induce the leukocyte receptor osteoclast-associated receptor gene expression, J Biol Chem 278(26): 24209–24216.CrossRefPubMedGoogle Scholar
  29. Suda, T., N. Takahashi, N. Udagawa, E. Jimi, M.T. Gillespie, and T.J. Martin. 1999. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families, Endocr Rev 20(3): 345–357.CrossRefPubMedGoogle Scholar
  30. Takami, M., N. Kim, J. Rho, and Y. Choi. 2002. Stimulation by toll-like receptors inhibits osteoclast differentiation. J Immunol 169(3): 1516–1523.PubMedGoogle Scholar
  31. Teitelbaum, S.L. 2000. Bone resorption by osteoclasts. Science 289(5484): 1504–1508.CrossRefPubMedGoogle Scholar
  32. Teitelbaum, S.L., and F.P. Ross. 2003. Genetic regulation of osteoclast development and function. Nat Rev Genet 4(8): 638–649.CrossRefPubMedGoogle Scholar
  33. Thesingh, C.W., and J.P. Scherft. 1985. Fusion disability of embryonic osteoclast precursor cells and macrophages in the microphthalmic osteopetrotic mouse. Bone 6(1): 43–52.CrossRefPubMedGoogle Scholar
  34. Tondravi, M.M., S.R. McKercher, K. Anderson, J.M. Erdmann, M. Quiroz, R. Maki, and S.L. Teitelbaum. 1997. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 386(6620): 81–84.CrossRefPubMedGoogle Scholar
  35. Yasuda, H., N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, A. Tomoyasu, K. Yano, M. Goto, A. Murakami, E. Tsuda, T. Morinaga, K. Higashio, N. Udagawa, N. Takahashi, and T. Suda. 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL, Proc Natl Acad Sci U S A 95(7): 3597–3602.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Junwon Lee
    • 1
  • Seoung-Hoon Lee
    • 2
  • Yongwon Choi
    • 2
  • Nacksung Kim
    • 1
  1. 1.Medical Research Center for Gene RegulationChonnam National UniversityKorea
  2. 2.Department of Pathology and Laboratory MedicineUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations