Advertisement

Ectodomain Shedding of Receptor Activator of NF-κB Ligand

  • Atsuhiko Hikita
  • Sakae Tanaka
Part of the Advances in Experimental Medicine and Biology book series (volume 602)

Receptor activator of NF-κb ligand (RANKL), a key regulator of osteoclastogenesis, is proteolytically processed and converted to a soluble form. RANKL sheddase and the biologic and pathologic role of RANKL shedding have been undetermined, but the identity of sheddase and its effect on osteoclastogenesis are gradually clarified. The regulatory mechanism and its relevance to some pathologic conditions are to be elucidated.

Keywords

Rheumatoid Arthritis Patient Primary Osteoblast Tumor Necrosis Factor Family Soluble RANKL Osteoclast Differentiation Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D.M., E. Maraskovsky, W.L. Billingsley, W.C. Dougall, M.E. Tometsko, E.R. Roux, M.C. Teepe, R.F. DuBose, D. Cosman, and L. Galibert. 1997. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390: 175–179.CrossRefPubMedGoogle Scholar
  2. Black, R.A., C.T. Rauch, C.J. Kozlosky, J.J. Peschon, J.L. Slack, M.F. Wolfson, B.J. Castner, K.L. Stocking, P. Reddy, S. Srinivasan, N. Nelson, N. Boiani, K.A. Schooley, M. Gerhart, R. Davis, J.N. Fitzner, R.S. Johnson, R.J. Paxton, C.J. March, and D.P. Cerretti. 1997. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385: 729–733.CrossRefPubMedGoogle Scholar
  3. Buxbaum, J.D., K.N. Liu, Y. Luo, J.L. Slack, K.L. Stocking, J.J. Peschon, R.S. Johnson, B.J. Castner, D.P. Cerretti, and R.A. Black. 1998. Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem 273: 27765–27767.CrossRefPubMedGoogle Scholar
  4. Chesneau, V., J.D. Becherer, Y. Zheng, H. Erdjument-Bromage, P. Tempst, and C.P. Blobel. 2003. Catalytic properties of ADAM19. J Biol Chem 278: 22331–22340.CrossRefPubMedGoogle Scholar
  5. Dougall, W.C., M. Glaccum, K. Charrier, K. Rohrbach, K. Brasel, T. De Smedt, E. Daro, J. Smith, M.E. Tometsko, C.R. Maliszewski, A. Armstrong, V. Shen, S. Bain, D. Cosman, D. Anderson, P.J. Morrissey, J.J. Peschon, and J. Schuh. 1999. RANK is essential for osteoclast and lymph node development. Genes Dev 13: 2412–2424.CrossRefPubMedGoogle Scholar
  6. Fata, J.E., Y.Y. Kong, J. Li, T. Sasaki, J. Irie-Sasaki, R.A. Moorehead, R. Elliott, S. Scully, E.B. Voura, D.L. Lacey, W.J. Boyle, R. Khokha, and J.M. Penninger. 2000. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103: 41–50.CrossRefPubMedGoogle Scholar
  7. Guo, L.J., H. Xie, H.D. Zhou, X.H. Luo, Y.Q. Peng, and E.Y. Liao. 2004. Stimulation of RANKL and inhibition of membrane-type matrix metalloproteinase-1 expression by parathyroid hormone in normal human osteoblasts. Endocr Res 30: 369–377.CrossRefPubMedGoogle Scholar
  8. Hikita, A., Y. Kadono, H. Chikuda, A. Fukuda, H. Wakeyama, H. Yasuda, K. Nakamura, H. Oda, T. Miyazaki, and S. Tanaka. 2005. Identification of an alternatively spliced variant of Ca2+-promoted Ras inactivator as a possible regulator of RANKL shedding. J Biol Chem 280: 41700–41706.CrossRefPubMedGoogle Scholar
  9. Hikita, A., Yana, I., Wakeyama, H., Nakamura, M., Kadono, Y., Oshima, Y., Nakamura, K., Seiki, M., and Tanaka, S. 2006. Negative regulation of osteoclastogenesis by ectodomain shedding of receptor activator of NF-Kappa B ligand. J Biol Chem 281: 36846–36855.CrossRefPubMedGoogle Scholar
  10. Holmbeck, K., P. Bianco, J. Caterina, S. Yamada, M. Kromer, S.A. Kuznetsov, M. Mankani, P.G. Robey, A.R. Poole, I. Pidoux, J.M. Ward, and H. Birkedal-Hansen. 1999. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99: 81–92.CrossRefPubMedGoogle Scholar
  11. Itoh, K., N. Udagawa, K. Matsuzaki, M. Takami, H. Amano, T. Shinki, Y. Ueno, N. Takahashi, and T. Suda. 2000. Importance of membrane- or matrix-associated forms of M-CSF and RANKL/ODF in osteoclastogenesis supported by SaOS-4/3 cells expressing recombinant PTH/PTHrP receptors. J Bone Miner Res 15: 1766–1775.CrossRefPubMedGoogle Scholar
  12. Jones, D.H., T. Nakashima, O. Sanchez, I. Kozieradzki, S.V. Komarova, I. Sarosi, S. Morony, E. Rubin, R. Sarao, C.V. Hojilla, V. Komnenovic, Y.Y. Kong, M. Schreiber, S.J. Dixon, S.M. Sims, R. Khokha, T. Wada, and J.M. Penninger. 2006. Regulation of cancer cell migration and bone metastasis by RANKL. Nature Mar 30;440(7084): 692–696.CrossRefGoogle Scholar
  13. Koike, H., S. Tomioka, H. Sorimachi, T.C. Saido, K. Maruyama, A. Okuyama, A. Fujisawa-Sehara, S. Ohno, K. Suzuki, and S. Ishiura. 1999. Membrane-anchored metalloprotease MDC9 has an alpha-secretase activity responsible for processing the amyloid precursor protein. Biochem J 343(Pt 2): 371–375.CrossRefPubMedGoogle Scholar
  14. Kong, Y.Y., H. Yoshida, I. Sarosi, H.L. Tan, E. Timms, C. Capparelli, S. Morony, A.J. Oliveira-dos-Santos, G. Van, A. Itie, W. Khoo, A. Wakeham, C.R. Dunstan, D.L. Lacey, T.W. Mak, W.J. Boyle, and J.M. Penninger. 1999 OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397: 315–323.CrossRefPubMedGoogle Scholar
  15. Kotake, S., N. Udagawa, M. Hakoda, M. Mogi, K. Yano, E. Tsuda, K. Takahashi, T. Furuya, S. Ishiyama, K.J. Kim, S. Saito, T. Nishikawa, N. Takahashi, A. Togari, T. Tomatsu, T. Suda, and N. Kamatani. 2001. Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum 44: 1003–1012.CrossRefPubMedGoogle Scholar
  16. Kriegler, M., C. Perez, K. DeFay, I. Albert, and S.D. Lu. 1988. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53: 45–53.CrossRefPubMedGoogle Scholar
  17. Lacey, D.L., E. Timms, H.L. Tan, M.J. Kelley, C.R. Dunstan, T. Burgess, R. Elliott, A. Colombero, G. Elliott, S. Scully, H. Hsu, J. Sullivan, N. Hawkins, E. Davy, C. Capparelli, A. Eli, Y.X. Qian, S. Kaufman, I. Sarosi, V. Shalhoub, G. Senaldi, J. Guo, J. Delaney, and W.J. Boyle. 1998. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93: 165–176.CrossRefPubMedGoogle Scholar
  18. Lam, J., S. Takeshita, J.E. Barker, O. Kanagawa, F.P. Ross, and S.L. Teitelbaum. 2000. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106: 1481–1488.CrossRefPubMedGoogle Scholar
  19. Lammich, S., E. Kojro, R. Postina, S. Gilbert, R. Pfeiffer, M. Jasionowski, C. Haass and F. Fahrenholz. 1999. Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A 96: 3922–3927.CrossRefPubMedGoogle Scholar
  20. Li, Y.M., M.T. Lai, M. Xu, Q. Huang, J. DiMuzio-Mower, M.K. Sardana, X.P. Shi, K.C. Yin, J.A. Shafer, and S.J. Gardell. 2000. Presenilin 1 is linked with gamma-secretase activity in the detergent solubilized state. Proc Natl Acad Sci U S A 97: 6138–6143.CrossRefPubMedGoogle Scholar
  21. Liao, E.Y., X.H. Luo, X.G. Deng, and X.P. Wu. 2001. Effects of 17beta-estradiol on the expression of membrane type 1 matrix metalloproteinase (MT1-MMP) and MMP-2 in human osteoblastic MG-63 cell cultures. J Endocrinol Invest 24: 876–881.PubMedGoogle Scholar
  22. Lum, L., B.R. Wong, R. Josien, J.D. Becherer, H. Erdjument-Bromage, J. Schlondorff, P. Tempst, Y. Choi, and C.P. Blobel. 1999. Evidence for a role of a tumor necrosis factor-alpha (TNF-alpha)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J Biol Chem 274: 13613–13618.CrossRefPubMedGoogle Scholar
  23. Luo, X.H., and E.Y. Liao. 2001. Progesterone differentially regulates the membrane-type matrix metalloproteinase-1 (MT1 -MMP) compartment of proMMP-2 activation in MG-63 cells. Horm Metab Res 33: 383–388.CrossRefPubMedGoogle Scholar
  24. Luo, X.H., E.Y. Liao, X. Su, and X.P. Wu. 2004. Parathyroid hormone inhibits the expression of membrane-type matrix metalloproteinase-1 (MT1-MMP) in osteoblast-like MG-63 cells. J Bone Miner Metab 22: 19–25.CrossRefPubMedGoogle Scholar
  25. Lynch, C.C., A. Hikosaka, H.B. Acuff, M.D. Martin, N. Kawai, R.K. Singh, T.C. Vargo-Gogola, J.L. Begtrup, T.E. Peterson, B. Fingleton, T. Shirai, L.M. Matrisian, and M. Futakuchi. 2005. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 7: 485–496.CrossRefPubMedGoogle Scholar
  26. Mizuno, A., T. Kanno, M. Hoshi, O. Shibata, K. Yano, N. Fujise, M. Kinosaki, K. Yamaguchi, E. Tsuda, A. Murakami, H. Yasuda, and K. Higashio. 2002. Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis. J Bone Miner Metab 20: 337–344.CrossRefGoogle Scholar
  27. Nakamura, M., N. Udagawa, S. Matsuura, M. Mogi, H. Nakamura, H. Horiuchi, N. Saito, B.Y. Hiraoka, Y. Kobayashi, K. Takaoka, H. Ozawa, H. Miyazawa, and N. Takahashi. 2003. Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology 144: 5441–5449.CrossRefPubMedGoogle Scholar
  28. Nakashima, T., Y. Kobayashi, S. Yamasaki, A. Kawakami, K. Eguchi, H. Sasaki, and H. Sakai. 2000. Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun 275: 768–775.CrossRefPubMedGoogle Scholar
  29. Schlondorff, J., L. Lum, and C.P. Blobel. 2001. Biochemical and pharmacological criteria define two shedding activities for TRANCE/OPGL that are distinct from the tumor necrosis factor alpha convertase. J Biol Chem. 276: 14665–14674.CrossRefPubMedGoogle Scholar
  30. Schneider, P., N. Holler, J.L. Bodmer, M. Hahne, K. Frei, A. Fontana, and J. Tschopp. 1998. Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 187: 1205–1213.CrossRefPubMedGoogle Scholar
  31. Selkoe, D.J. 1991. The molecular pathology of Alzheimer’s disease. Neuron 6: 487–498.CrossRefPubMedGoogle Scholar
  32. Takahashi, N., T. Akatsu, N. Udagawa, T. Sasaki, A. Yamaguchi, J.M. Moseley, T.J. Martin, and T. Suda. 1988. Osteoblastic cells are involved in osteoclast formation. Endocrinology 123: 2600–2602.CrossRefPubMedGoogle Scholar
  33. Vassar, R., B.D. Bennett, S. Babu-Khan, S. Kahn, E.A. Mendiaz, P. Denis, D.B. Teplow, S. Ross, P. Amarante, R. Loeloff, Y. Luo, S. Fisher, J. Fuller, S. Edenson, J. Lile, M.A. Jarosinski, A.L. Biere, E. Curran, T. Burgess, J.C. Louis, F. Collins, J. Treanor, G. Rogers, and M. Citron. 1999. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286: 735–741.CrossRefPubMedGoogle Scholar
  34. Wong, B.R., J. Rho, J. Arron, E. Robinson, J. Orlinick, M. Chao, S. Kalachikov, E. Cayani, F.S. Bartlett, 3rd, W.N. Frankel, S.Y. Lee, and Y. Choi. 1997. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 272: 25190–25194.CrossRefPubMedGoogle Scholar
  35. Yamanaka, H., K. Makino, M. Takizawa, H. Nakamura, N. Fujimoto, H. Moriya, R. Nemori, H. Sato, M. Seiki, and Y. Okada. 2000. Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in rheumatoid synovium. Lab Invest 80: 677–687.PubMedGoogle Scholar
  36. Yasuda, H., N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, A. Tomoyasu, K. Yano, M. Goto, A. Murakami, E. Tsuda, T. Morinaga, K. Higashio, N. Udagawa, N. Takahashi, and T. Suda. 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95: 3597–3602.CrossRefPubMedGoogle Scholar
  37. Ziolkowska, M., M. Kurowska, A. Radzikowska, G. Luszczykiewicz, P. Wiland, W. Dziewczopolski, A. Filipowicz-Sosnowska, J. Pazdur, J. Szechinski, J. Kowalczewski, M. Rell-Bakalarska, and W. Maslinski. 2002. High levels of osteoprotegerin and soluble receptor activator of nuclear factor kappa B ligand in serum of rheumatoid arthritis patients and their normalization after anti-tumor necrosis factor alpha treatment. Arthritis Rheum 46: 1744–1753.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Atsuhiko Hikita
    • 1
  • Sakae Tanaka
    • 2
  1. 1.Clinical Research Center for Allergy and RheumatologyOrganization Sagamihata National HospitalJapan
  2. 2.Department of Orthopaedic SurgeryThe University of TokyoJapan

Personalised recommendations