Advertisement

SLE 1, 2, 3…Genetic Dissection of Lupus

  • Jiankun Zhu
  • Chandra Mohan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 601)

Abstract

Systemic lupus erythematosus (SLE) is a chronic and complex autoimmune disease of unknown etiology, characterized by the presence of widespread immunological abnormalities and multiorgan injury. An important advance over the past decade has been our understanding of how different genetic loci (or genes) may dictate specific immune abnormalities in lupus. “Genetic dissection” has unveiled some of the mystery enshrouding lupus pathogenesis. It appears that there are at least two distinct events leading to disease. The first involves a breach in the adaptive immune system and the second involves a dysregulation of innate immunity. Co-ordinate dysregulation of both checkpoints is necessary for full-blown lupus to ensue. The challenge ahead is to understand how these two checkpoints are regulated in human SLE, and to devise therapeutic strategies that target both checkpoints.

Keywords

Systemic Lupus Erythematosus Systemic Lupus Erythematosus Patient Lupus Nephritis Congenic Strain Systemic Lupus Erythema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, B.S., Eisenberg, R.A., Theofilopoulos, A.N., Izui, S., Wilson, C.B., McConahey, P.J., Murphy, E.D., Roths, J.B. and Dixon, F.J. (1978) Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J. Exp. Med. 148, 1198–1215.CrossRefPubMedGoogle Scholar
  2. Baechler, E.C., Gregersen, P.K. and Behrens, T.W. (2004) The emerging role of interferon in human systemic lupus erythematosus. Curr. Opin. Immunol. 16, 801–807.CrossRefPubMedGoogle Scholar
  3. Banchereau, J. and Steinman, R.M. (1998) Dendritic cells and the control of immunity. Nature 392, 245–252.CrossRefPubMedGoogle Scholar
  4. Bennett, L., Palucka, A.K., Arce, E., Cantrell, V., Borvak, J., Banchereau, J. and Pascual, V. (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723.CrossRefPubMedGoogle Scholar
  5. Blanco, P., Palucka, A.K., Gill, M., Pascual, V. and Banchereau, J. (2001) Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 294, 1540–1543.CrossRefPubMedGoogle Scholar
  6. Braun, D., Geraldes, P. and Demengeot, J. (2003) Type I interferon controls the onset and severity of autoimmune manifestations in lpr mice. J. Autoimmun. 20, 15–25.CrossRefPubMedGoogle Scholar
  7. Crow, M.K. and Kirou, K.A. (2004) Interferon-alpha in systemic lupus erythematosus. Curr. Opin. Rheumatol. 16, 541–547.CrossRefPubMedGoogle Scholar
  8. Davidson, A. and Aranow, C. (2006) Pathogenesis and treatment of systemic lupus erythematosus nephritis. Curr. Opin. Rheumatol. 18, 468–475.PubMedGoogle Scholar
  9. Ding, D., Mehta, H., McCune, W.J. and Kaplan, M.J. (2006) Aberrant phenotype and function of myeloid dendritic cells in systemic lupus erythematosus. J. Immunol. 177, 5878–5889.PubMedGoogle Scholar
  10. Gota, C. and Calabrese, L. (2003) Induction of clinical autoimmune disease by therapeutic interferon-alpha. Autoimmunity 36, 511–518.CrossRefPubMedGoogle Scholar
  11. Hron, J.D. and Peng, S.L. (2004) Type I IFN protects against murine lupus. J. Immunol. 173, 2134–2142.PubMedGoogle Scholar
  12. Hudgins, C.C., Steinberg, R.T., Klinman, D.M., Reeves, M.J. and Steinberg, A.D. (1985) Studies of consomic mice bearing the Y chromosome of the BXSB mouse. J. Immunol. 134, 3849–3854.PubMedGoogle Scholar
  13. Iwasaki, A. and Medzhitov, R. (2004) Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995.CrossRefPubMedGoogle Scholar
  14. Izui, S. (1990) Autoimmune accelerating genes, lpr and Yaa, in murine systemic lupus erythematosus. Autoimmunity 6, 113–129.CrossRefPubMedGoogle Scholar
  15. Izui, S., Higaki, M., Morrow, D. and Merino, R. (1988) The Y chromosome from autoimmune BXSB/MpJ mice induces a lupus-like syndrome in (NZW x C57BL/6)F1 male mice, but not in C57BL/6 male mice. Eur. J. Immunol. 18, 911–915.CrossRefPubMedGoogle Scholar
  16. Kong, P.L., Morel, L., Croker, B.P. and Craft, J. (2004) The centromeric region of chromosome 7 from MRL mice (Lmb3) is an epistatic modifier of Fas for autoimmune disease expression. J. Immunol. 172, 2785–2794.PubMedGoogle Scholar
  17. Kono, D.H. and Theofilopoulos, A.N. (2000) Genetics of systemic autoimmunity in mouse models of lupus. Int. Rev. Immunol. 19, 367–387.CrossRefPubMedGoogle Scholar
  18. Kumar, K.R., Li, L., Yan, M., Bhaskarabhatla, M., Mobley, A.B., Nguyen, C., Mooney, J.M., Schatzle, J.D., Wakeland, E.K. and Mohan, C. (2006) Regulation of B cell tolerance by the lupus susceptibility gene Ly108. Science 312, 1665–1669.CrossRefPubMedGoogle Scholar
  19. Li, J., Liu, Y., Xie, C., Zhu, J., Kreska, D., Morel, L. and Mohan, C. (2005) Deficiency of type I interferon contributes to Sle2-associated component lupus phenotypes. Arthritis Rheum. 52, 3063–3072.CrossRefPubMedGoogle Scholar
  20. Meylan, E., Tschopp, J. and Karin, M. (2006) Intracellular pattern recognition receptors in the host response. Nature 442, 39–44.CrossRefPubMedGoogle Scholar
  21. Mohan, C., Alas, E., Morel, L., Yang, P. and Wakeland, E.K. (1998a) Genetic dissection of SLE pathogenesis. Sle1 on murine chromosome 1 leads to a selective loss of tolerance to H2A/H2B/DNA subnucleosomes. J. Clin. Invest. 101, 1362–1372.PubMedGoogle Scholar
  22. Mohan, C., Morel, L., Yang, P. and Wakeland, E.K. (1998b) Accumulation of splenic B1a cells with potent antigen-presenting capability in NZM2410 lupus-prone mice. Arthritis Rheum. 41, 1652–1662.CrossRefPubMedGoogle Scholar
  23. Mohan, C., Morel, L., Yang, P. and Wakeland, E.K. (1997) Genetic dissection of systemic lupus erythematosus pathogenesis: Sle2 on murine chromosome 4 leads to B cell hyperactivity. J. Immunol. 159, 454–465.PubMedGoogle Scholar
  24. Mohan, C., Morel, L., Yang, P., Watanabe, H., Croker, B., Gilkeson, G. and Wakeland, E.K. (1999a) Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies. J. Clin. Invest. 103, 1685–1695.CrossRefPubMedGoogle Scholar
  25. Mohan, C., Yu, Y., Morel, L., Yang, P. and Wakeland, E.K. (1999b) Genetic dissection of Sle pathogenesis: Sle3 on murine chromosome 7 impacts T cell activation, differentiation, and cell death. J. Immunol. 162, 6492–6502.PubMedGoogle Scholar
  26. Morel, L., Blenman, K.R., Croker, B.P. and Wakeland, E.K. (2001) The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc. Natl. Acad. Sci. U.S.A. 98, 1787–1792.CrossRefPubMedGoogle Scholar
  27. Morel, L., Croker, B.P., Blenman, K.R., Mohan, C., Huang, G., Gilkeson, G. and Wakeland, E.K. (2000) Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains. Proc. Natl. Acad. Sci. U.S.A. 97, 6670–6675.CrossRefPubMedGoogle Scholar
  28. Morel, L., Mohan, C., Yu, Y., Croker, B.P., Tian, N., Deng, A. and Wakeland, E.K. (1997) Functional dissection of systemic lupus erythematosus using congenic mouse strains. J. Immunol. 158, 6019–6028.PubMedGoogle Scholar
  29. Morel, L., Rudofsky, U.H., Longmate, J.A., Schiffenbauer, J. and Wakeland, E.K. (1994) Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunity 1, 219–229.CrossRefPubMedGoogle Scholar
  30. Morel, L. and Wakeland, E.K. (2000) Lessons from the NZM2410 model and related strains. Int. Rev. Immunol. 19, 423–446.CrossRefPubMedGoogle Scholar
  31. Morel, L., Yu, Y., Blenman, K.R., Caldwell, R.A. and Wakeland, E.K. (1996) Production of congenic mouse strains carrying genomic intervals containing SLE-susceptibility genes derived from the SLE-prone NZM2410 strain. Mamm. Genome 7, 335–339.CrossRefPubMedGoogle Scholar
  32. Murphy, E.D. and Roths, J.B. (1979) A Y chromosome associated factor in strain BXSB producing accelerated autoimmunity and lymphoproliferation. Arthritis Rheum. 22, 1188–1194.CrossRefPubMedGoogle Scholar
  33. Nath, S.K., Kilpatrick, J. and Harley, J.B. (2004) Genetics of human systemic lupus erythematosus: the emerging picture. Curr. Opin. Immunol. 16, 794–800.CrossRefPubMedGoogle Scholar
  34. Neighbour, P.A. and Grayzel, A.I. (1981) Interferon production of vitro by leucocytes from patients with systemic lupus erythematosus and rheumatoid arthritis. Clin. Exp. Immunol. 45, 576–582.PubMedGoogle Scholar
  35. Pisitkun, P., Deane, J.A., Difilippantonio, M.J., Tarasenko, T., Satterthwaite, A.B. and Bolland, S. (2006) Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672.CrossRefPubMedGoogle Scholar
  36. Rudofsky, U.H., Evans, B.D., Balaban, S.L., Mottironi, V.D. and Gabrielsen, A.E. (1993) Differences in expression of lupus nephritis in New Zealand mixed H-2z homozygous inbred strains of mice derived from New Zealand black and New Zealand white mice. Origins and initial characterization. Lab. Invest. 68, 419–426.Google Scholar
  37. Santiago-Raber, M.L., Baccala, R., Haraldsson, K.M., Choubey, D., Stewart, T.A., Kono, D.H. and Theofilopoulos, A.N. (2003) Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J. Exp. Med. 197, 777–788.CrossRefPubMedGoogle Scholar
  38. Shi, X., Xie, C., Kreska, D., Richardson, J.A. and Mohan, C. (2002) Genetic dissection of SLE: SLE1 and FAS impact alternate pathways leading to lymphoproliferative autoimmunity. J. Exp. Med. 196, 281–292.CrossRefPubMedGoogle Scholar
  39. Sobel, E.S., Mohan, C., Morel, L., Schiffenbauer, J. and Wakeland, E.K. (1999) Genetic dissection of SLE pathogenesis: adoptive transfer of Sle1 mediates the loss of tolerance by bone marrow-derived B cells. J. Immunol. 162, 2415–2421.PubMedGoogle Scholar
  40. Sobel, E.S., Morel, L., Baert, R., Mohan, C., Schiffenbauer, J. and Wakeland, E.K. (2002) Genetic dissection of systemic lupus erythematosus pathogenesis: evidence for functional expression of Sle3/5 by non-T cells. J. Immunol. 169, 4025–4032.PubMedGoogle Scholar
  41. Steinberg, R.T., Miller, M.L. and Steinberg, A.D. (1985) Effect of the BXSB Y chromosome accelerating gene on autoantibody production. Clin. Immunol. Immunopathol. 35, 67–72.CrossRefPubMedGoogle Scholar
  42. Stetson, D.B. and Medzhitov, R. (2006) Type I interferons in host defense. Immunity 25, 373–381.Google Scholar
  43. Subramanian, S., Tus, K., Li, Q.Z., Wang, A., Tian, X.H., Zhou, J., Liang, C., Bartov, G., McDaniel, L.D., Zhou, X.J., Schultz, R.A. and Wakeland, E.K. (2006) A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl. Acad. Sci. U.S.A. 103, 9970–9975.CrossRefPubMedGoogle Scholar
  44. Tsao, B.P., Cantor, R.M., Grossman, J.M., Shen, N., Teophilov, N.T., Wallace, D.J., Arnett, F.C., Hartung, K., Goldstein, R., Kalunian, K.C., Hahn, B.H. and Rotter, J.I. (1999) PARP alleles within the linked chromosomal region are associated with systemic lupus erythematosus. J. Clin. Invest. 103, 1135–1140.CrossRefPubMedGoogle Scholar
  45. Vyse, T.J. and Kotzin, B.L. (1998) Genetic susceptibility to systemic lupus erythematosus. Ann. Rev. Immunol. 16, 261–292.CrossRefGoogle Scholar
  46. Wakeland, E.K., Liu, K., Graham, R.R. and Behrens, T.W. (2001) Delineating the genetic basis of systemic lupus erythematosus. Immunity 15, 397–408.CrossRefPubMedGoogle Scholar
  47. Wakeland, E.K., Wandstrat, A.E., Liu, K. and Morel, L. (1999) Genetic dissection of systemic lupus erythematosus. Curr. Opin. Immunol. 11, 701–707.CrossRefPubMedGoogle Scholar
  48. Wakui, M., Kim, J., Butfiloski, E.J., Morel, L. and Sobel, E.S. (2004) Genetic dissection of lupus pathogenesis: Sle3/5 impacts IgH CDR3 sequences, somatic mutations, and receptor editing. J. Immunol. 173, 7368–7376.PubMedGoogle Scholar
  49. Wandstrat, A.E., Nguyen, C., Limaye, N., Chan, A.Y., Subramanian, S., Tian, X.H., Yim, Y.S., Pertsemlidis, A., Garner, H.R., Jr., Morel, L. and Wakeland, E.K. (2004) Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 21, 769–780.CrossRefPubMedGoogle Scholar
  50. Xu, Z., Duan, B., Croker, B.P., Wakeland, E.K. and Morel, L. (2005) Genetic dissection of the murine lupus susceptibility locus Sle2: contributions to increased peritoneal B-1a cells and lupus nephritis map to different loci. J. Immunol. 175, 936–943.PubMedGoogle Scholar
  51. Zhu, J., Liu, X., Xie, C., Yan, M., Yu, Y., Sobel, E.S., Wakeland, E.K. and Mohan, C. (2005) T cell hyperactivity in lupus as a consequence of hyperstimulatory antigen-presenting cells. J. Clin. Invest. 115, 1869–1878.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Internal Medicine and the Center for ImmunologyUniversity of Texas Southwestern Medical SchoolDallasUSA

Personalised recommendations