Herpes Simplex Virus: Treatment with Antimicrobial Peptides

  • Leonid V. Kovalchuk
  • Ludmila V. Gankovskaya
  • Oksana A. Gankovskaya
  • Vyacheslav F. Lavrov
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 601)


The herpes virus infection represents a significant challenge for public health. The innate immunity plays an important role in herpes simplex virus (HSV) elimination. The innate antiviral immunity has not been comprehensively studied. The recent investigations demonstrate that Toll-like receptors are actively involved in the virus recognition. The complement and natural antibodies, as well as cytokines and antimicrobial peptides, are the first molecules to bind to virions. In this chapter, some mechanisms of the innate antiviral immunity are discussed and treatment regimens are proposed. The complex of native cytokines and antimicrobial peptides (CCAP or Superlymph) proved to inhibit the virus reproduction in vitro. Protegrines, as a CCAP component, were active against the virus. Considering all the data, we conclude that the complex of native cytokines and antimicrobial peptides produces both immunomodulating and antiviral effects.


Natural Killer Cell Antimicrobial Peptide Herpes Simplex Virus Type Antiviral Effect Genital Herpes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahams, V.M. and Mor, G. (2005) Toll-like receptors and their role in the trophoblast. Placenta 26, 540–547.CrossRefPubMedGoogle Scholar
  2. Andersen, J.M., Al-Khairy, D. and Ingalls, R.R. (2006) Innate immunity at the mucosal surface: role of toll-like receptor 3 and toll-like receptor 9 in cervical epithelial cell responses to microbial pathogens. Biol. Reprod. 74, 824–831.CrossRefPubMedGoogle Scholar
  3. Anumba, D.O. (2005) Characterization of toll-like receptors in the female reproductive tract in humans. Hum. Reprod. 20, 1372–1378.CrossRefPubMedGoogle Scholar
  4. Barinskii, I.F., Posevaia, T.A., Shabalina, N.V. and Nikitina A.A. (2005) Herpes virus infection in patients with chronic glomerulonephritis. Vopr. Virusol. (Russ.) 50, 35–37.Google Scholar
  5. Boman, H. (2003) Antibacterial peptides: basic facts and emerging concepts. J. Intern. Med. 254, 197–215.CrossRefPubMedGoogle Scholar
  6. Bowie, A.G. and Haga, I.R. (2005) The role of Toll-like receptors in the host response to viruses. Mol. Immunol. 42, 859–867.CrossRefPubMedGoogle Scholar
  7. Cunningham, A.L., Diefenbach, R.J., Miranda-Saksena, M., Bosnjak, L., Kim, M., Jones, C. and Douglas, M.W. (2006) The cycle of human herpes simplex virus infection: virus transport and immune control. J. Infect. Dis. 194, 11–18.CrossRefGoogle Scholar
  8. Duerst, R.J. and Morrison L.A. (2003) Innate immunity to herpes simplex virus type 2. Viral Immunol. 16, 475–490.CrossRefPubMedGoogle Scholar
  9. Ellermann-Eriksen, S. (2005) Macrophages and cytokines in the early defense against herpes simplex virus. Virology J. 2, 1–30.CrossRefGoogle Scholar
  10. Fahlgren, A., Hammarstrom, S., Danielsson, A. and Hammarstrom, M.L. (2004) Beta-Defensin-3 and -4 in intestinal epithelial cells display increased mRNA expression in ulcerative colitis. Clin. Exp. Immunol. 137, 379–385.CrossRefPubMedGoogle Scholar
  11. Garner, J.A. (2003) Herpes simplex virion entry into and intracellular transport within mammalian cells. Adv. Drug Deliv. Rev. 55, 1497–1513.CrossRefPubMedGoogle Scholar
  12. Garzino-Demo, A. (2007) Chemokines and defensins as HIV suppressive factors: an evolving story. Curr. Pharm. Des. 13, 163–172.CrossRefPubMedGoogle Scholar
  13. Grunewald, K., Desai, P., Winkler, D.C., Heymann, J.B., Belnap, D.M., Baumeister, W. and Steven, A.C. (2003) Three-dimensional structure of herpes simplex virus from Cryo–electron tomography. Science 302, 1396–1398.CrossRefPubMedGoogle Scholar
  14. Gupta, A.K., Cherman, A.M. and Tyring, S.K. (2004) Viral and nonviral uses of imiquimod: a review. J. Cutan. Med. Surg. 8, 338–352.CrossRefPubMedGoogle Scholar
  15. Harandi, A.M., Eriksson, K. and Holmgren, J. (2003) A protective role of locally administered immunostimulatory CpG oligodeoxynucleotide in a mouse model of genital herpes infection. J. Virol. 77, 953–962.CrossRefPubMedGoogle Scholar
  16. Herbst-Kralovetzl, M.M. and Pyles, R.B. (2006) Toll-like receptors, innate immunity and HSV pathogenesis. Herpes 13, 37–41.Google Scholar
  17. Hollier, L.M. and Grissom, H. (2005) Human herpes viruses in pregnancy: cytomegalovirus, Epstein-Barr virus, and varicella zoster virus. Clin. Perinatol. 32, 671– 696.CrossRefPubMedGoogle Scholar
  18. Howell, M., Jones, J. and Kisich, K. (2004) Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum1. J. Immunol. 172, 1763–1767.PubMedGoogle Scholar
  19. Hugseyin Baskin, H., Ellermann-Eriksen, S., Lovmand, J. and Mogensen, S.C. (1997) Herpes simplex virus type 2 synergizes with interferon-c in the induction of nitric oxide production in mouse macrophages through autocrine secretion of tumour necrosis factor-α . J. Gen. Virol. 78, 195–203.Google Scholar
  20. Khanna, K.M., Lepisto, A.J., Decman, V. and Hendricks, R.L. (2004) Immune control of herpes simplex virus during latency. Curr. Opin. Immunol. 16, 463–469.CrossRefPubMedGoogle Scholar
  21. Kokriakov, V.N., Koval’chuk, L.V., Aleshina, G.M. and Shamova, O.V. (2006) Cationic antimicrobial peptides as molecular immunity factors: multi-functionality. Zh. Mikrobiol. Epidemiol. Immunobiol. (Russ.) 2, 98–105.Google Scholar
  22. Koval’chuk, L.V., Gankovskaia, L.V., Moroz, A.F., Avedova, T.A. and Ukhina, T.V. (2004) Antistaphylococcal activity of the complex of natural cytokines. Zh. Mikrobiol. Epidemiol. Immunobiol. (Russ.) 1, 55–59.Google Scholar
  23. Koval’chuk, L.V., Lavrov, V.F., Gankovskaia, L.V., Ebralidze, L.K. and Barkevich, O.A. (2005) In vitro inhibition of the cytopathic action of herpes simplex virus, type 1, with a natural cytokine complex. Zh. Mikrobiol. Epidemiol. Immunobiol. J 1, 57–60PubMedGoogle Scholar
  24. Lehrer, R. and Ganz, T. (2002). Cathelicidins: a family of endogenous antimicrobial peptides. Curr. Opin. Hematol. 9, 18–22.CrossRefPubMedGoogle Scholar
  25. Malmgaard, L. and Paludan, S. (2003) Interferon (IFN)-a/b, interleukin (IL)-12 and IL-18 coordinately induce production of IFN-c during infection with herpes simplex virus type 2. J. Gen. Virol. 84, 2497–2500.CrossRefPubMedGoogle Scholar
  26. Milligan, G.N. (1999) Neutrophils aid in protection of the vaginal mucosae of immune mice against challenge with herpes simplex virus type 2. J. Virol. 73, 6380–6386.PubMedGoogle Scholar
  27. Ouellette, A.J. and Bevins, C.L. (2001) Paneth cell defensins and innate immunity of the small bowel. Inflamm. Bowel Dis. 7, 43–50.CrossRefPubMedGoogle Scholar
  28. Pyles, R.B., Higgins, D., Chalk, C., Zalar, A., Eiden, J. and Brown, C. (2002) Use of immunostimulatory sequence containing oligonucleotides as topical therapy for genital herpes simplex virus type 2 infection. J. Virol. 76, 11387–11396.CrossRefPubMedGoogle Scholar
  29. Spear, P.G. (2004) Herpes simplex virus entry receptors and viral ligands. Cell. Microbiol. 6, 401–410.CrossRefPubMedGoogle Scholar
  30. Thompson, K.A., Strayer, D.R., Salvato, P.D., Thompson, C.E., yKlimas, N. and Molavi, A. (1996) Results of a double-blind placebo-controlled study of the double-stranded RNA drug polyI:polyC12U in the treatment of HIV infection. Eur. J. Clin. Microbiol. Infect. 15, 580–587.CrossRefGoogle Scholar
  31. Yasin, B., Pang, M. and Turner, J. (2000) Evaluation of inactivation of infectious HSV by host-defense peptides. Eur. J. Clin. Microbiol. Infect. Dis. 19, 187–194.CrossRefGoogle Scholar
  32. Yasin, B., Wang, W., Pang, M., Cheshenko, N., Hong, T., Waring, A.J., Herold, B.C., Wagar, E.A. and Lehrer R.I. (2004) Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J. Virol. 78, 5147–5156.CrossRefPubMedGoogle Scholar
  33. Zasloff, M. (2002) Antimicrobial peptides of multicellular organism. Nature 415, 389–395.CrossRefPubMedGoogle Scholar
  34. Zughaier, S.M., Shafer, W.M. and Stephens, D.S. (2005) Antimicrobial peptides and endotoxin inhibit cytokine and nitric oxide release but amplify respiratory burst response in human and murine macrophages. Cell. Microbiol. 7, 1251–1261.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Leonid V. Kovalchuk
    • 1
  • Ludmila V. Gankovskaya
    • 1
  • Oksana A. Gankovskaya
    • 2
  • Vyacheslav F. Lavrov
    • 2
  1. 1.Department of ImmunologyRussian State Medical UniversityMoscowRussia
  2. 2.Department of Viral Infection DiagnosticsMechnikov Research Institute of Vaccines and SeraRussia

Personalised recommendations