Interleukin-7 Immunotherapy

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 601)


IL-7 is a member of the common γ -chain family of cytokines sharing a common γ -chain in their receptor. Beyond its long-established pivotal role in immune development, it has been more recently recognized as a critically important regulator of peripheral naïve and memory T cell homeostasis while its role in postdevelopment thymic function remains at best, poorly defined, and controversial. Its multiple immune-enhancing properties, most notably in the maintenance of T cell homeostasis, make it a very attractive candidate for immunotherapy in a wide variety of clinical situations. Following many years of rich preclinical data in murine and simian models, IL-7 is now emerging in human phase I trials as a very promising immunotherapeutic agent. Human in vivo data discussed here are derived from the phase I study initiated at the National Cancer Institute in collaboration with Cytheris, Inc., in a cohort of subjects with incurable malignancy.


Severe Combine Immune Deficiency Recent Thymic Emigrant Autologous Melanoma Cell Incurable Malignancy Immune Depletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akashi, K., Kondo, M., Freeden-Jeffry, U., Murray, R. and Weissman, I.L. (1997) Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89, 1033–1041.CrossRefPubMedGoogle Scholar
  2. Alderson, M.R., Tough, T.W., Ziegler, S.F. and Grabstein, K.H. (1991) Interleukin 7 induces cytokine secretion and tumoricidal activity by human peripheral blood monocytes. J. Exp. Med. 173, 923–930.CrossRefPubMedGoogle Scholar
  3. Appasamy, P.M. (1999) Biological and clinical implications of interleukin-7 and lymphopoiesis. Cytokines Cell Mol. Ther. 5, 25–39.PubMedGoogle Scholar
  4. Bohm, M., Moller, P., Kalbfleisch, U., Worm, M., Czarnetzki, B.M. and Schadendorf, D. (1994) Lysis of allogeneic and autologous melanoma cells by IL-7-induced lymphokine-activated killer cells. Br. J. Cancer 70, 54–59.PubMedGoogle Scholar
  5. Bolotin, E., Annett, G., Parkman, R. and Weinberg, K. (1999) Serum levels of IL-7 in bone marrow transplant recipients: relationship to clinical characteristics and lymphocyte count. Bone Marrow Transplant. 23, 783–788.CrossRefPubMedGoogle Scholar
  6. Dittel, B.N. and LeBien, T.W. (1995) The growth response to IL-7 during normal human B cell ontogeny is restricted to B-lineage cells expressing CD34. J. Immunol. 154, 58–67.PubMedGoogle Scholar
  7. Douek, D.C., Vescio, R.A., Betts, M.R., Brenchley, J.M., Hill, B.J., Zhang, L., Berenson, J.R., Collins, R.H. and Koup, R.A. (2000) Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T cell reconstitution. Lancet 355, 1875–1881.CrossRefPubMedGoogle Scholar
  8. El Kassar, N., Lucas, P.J., Klug, D.B., Zamisch, M., Merchant, M., Bare, C.V., Choudhury, B., Sharrow, S.O., Richie, E., Mackall, C.L. and Gress, R.E. (2004) A dose effect of IL-7 on thymocyte development. Blood 104, 1419–1427.CrossRefPubMedGoogle Scholar
  9. Fisher, A.G., Burdet, C., Bunce, C., Merkenschlager, M. and Ceredig, R. (1995) Lymphoproliferative disorders in IL-7 transgenic mice: expansion of immature B cells which retain macrophage potential. Int. Immunol. 7, 415–423.CrossRefPubMedGoogle Scholar
  10. Freeden-Jeffry, U., Vieira, P., Lucian, L.A., McNeil, T., Burdach, S.E. and Murray, R. (1995) Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526.CrossRefGoogle Scholar
  11. Fry, T.J., Connick, E., Falloon, J., Lederman, M.M., Liewehr, D.J., Spritzler, J., Steinberg, S.M., Wood, L.V., Yarchoan, R., Zuckerman, J., Landay, A. and Mackall, C.L. (2001) A potential role for interleukin-7 in T cell homeostasis. Blood 97, 2983–2990.CrossRefPubMedGoogle Scholar
  12. Fry, T.J. and Mackall, C.L. (2002) Interleukin-7: from bench to clinic. Blood 99, 3892–3904.CrossRefPubMedGoogle Scholar
  13. Fry, T.J., Moniuszko, M., Creekmore, S., Donohue, S.J., Douek, D.C., Giardina, S., Hecht, T.T., Hill, B.J., Komschlies, K., Tomaszewski, J., Franchini, G. and Mackall, C.L. (2003) IL-7 therapy dramatically alters peripheral T cell homeostasis in normal and SIV-infected nonhuman primates. Blood 101, 2294–2299.CrossRefPubMedGoogle Scholar
  14. Goodwin, R.G., Lupton, S., Schmierer, A., Hjerrild, K.J., Jerzy, R., Clevenger, W., Gillis, S., Cosman, D. and Namen, A.E. (1989) Human interleukin 7: molecular cloning and growth factor activity on human and murine B-lineage cells. Proc. Natl. Acad. Sci. USA 86, 302–306.CrossRefPubMedGoogle Scholar
  15. Hakim, F.T., Cepeda, R., Kaimei, S., Mackall, C.L., McAtee, N., Zujewski, J., Cowan, K. and Gress, R.E. (1997) Constraints on CD4 recovery postchemotherapy in adults: thymic insufficiency and apoptotic decline of expanded peripheral CD4 cells. Blood 90, 3789–3798.PubMedGoogle Scholar
  16. Hakim, F.T. and Gress, R.E. (2005) Reconstitution of the lymphocyte compartment after lymphocyte depletion: a key issue in clinical immunology. Eur. J. Immunol. 35, 3099–3102.CrossRefPubMedGoogle Scholar
  17. Hakim, F.T., Memon, S.A., Cepeda, R., Jones, E.C., Chow, C.K., Kasten-Sportes, C., Odom, J., Vance, B.A., Christensen, B.L., Mackall, C.L. and Gress, R.E. (2005) Age-dependent incidence, time course, and consequences of thymic renewal in adults. J. Clin. Invest 115, 930–939.PubMedGoogle Scholar
  18. Hofmeister, R., Khaled, A.R., Benbernou, N., Rajnavolgyi, E., Muegge, K. and Durum, S.K. (1999) Interleukin-7: physiological roles and mechanisms of action. Cytokine Growth Factor Rev. 10, 41–60.CrossRefPubMedGoogle Scholar
  19. Komschlies, K.L., Back, T.T., Gregorio, T.A., Gruys, M.E., Damia, G., Wiltrout, R.H. and Faltynek, C.R. (1994a) Effects of rhIL-7 on leukocyte subsets in mice: implications for antitumor activity. Immunol. Ser. 61, 95–104.PubMedGoogle Scholar
  20. Komschlies, K.L., Gregorio, T.A., Gruys, M.E., Back, T.C., Faltynek, C.R. and Wiltrout, R.H. (1994b) Administration of recombinant human IL-7 to mice alters the composition of B-lineage cells and T cell subsets, enhances T cell function, and induces regression of established metastases. J. Immunol. 152, 5776–5784.PubMedGoogle Scholar
  21. Komschlies, K.L., Grzegorzewski, K.J. and Wiltrout, R.H. (1995) Diverse immunological and hematological effects of interleukin 7: implications for clinical application. J. Leukoc. Biol. 58, 623–633.PubMedGoogle Scholar
  22. Liu, W., Putnam, A.L., Xu-Yu, Z., Szot, G.L., Lee, M.R., Zhu, S., Gottlieb, P.A., Kapranov, P., Gingeras, T.R., Fazekas de St Groth, B., Clayberger, C., Soper, D.M., Ziegler, S.F. and Bluestone, J.A. (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701–1711.Google Scholar
  23. Macchi, P., Villa, A., Giliani, S., Sacco, M.G., Frattini, A., Porta, F., Ugazio, A.G., Johnston, J.A., Candotti, F. and O’Shea, J.J. (1995) Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65–68.CrossRefPubMedGoogle Scholar
  24. Mackall, C.L. (2000) T cell immunodeficiency following cytotoxic antineoplastic therapy: a review. Stem Cells 18, 10–18.CrossRefPubMedGoogle Scholar
  25. Mackall, C.L., Bare, C.V., Granger, L.A., Sharrow, S.O., Titus, J.A. and Gress, R.E. (1996) Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J. Immunol. 156, 4609–4616.PubMedGoogle Scholar
  26. Mackall, C.L., Fleisher, T.A., Brown, M.R., Andrich, M.P., Chen, C.C., Feuerstein, I.M., Horowitz, M.E., Magrath, I.T., Shad, A.T., Steinberg, S.M., Wexler, L.H. and Gress, R.E. (1995) Age, thymopoiesis, and CD4+ T lymphocyte regeneration after intensive chemotherapy [see comments]. N. Engl. J. Med. 332, 143–149.CrossRefPubMedGoogle Scholar
  27. Mackall, C.L., Fleisher, T.A., Brown, M.R., Andrich, M.P., Chen, C.C., Feuerstein, I.M., Magrath, I.T., Wexler, L.H., Dimitrov, D.S. and Gress, R.E. (1997) Distinctions between CD8+ and CD4+ T cell regenerative pathways result in prolonged T cell subset imbalance after intensive chemotherapy. Blood 89, 3700–3707.PubMedGoogle Scholar
  28. Mackall, C.L., Fleisher, T.A., Brown, M.R., Magrath, I.T., Shad, A.T., Horowitz, M.E., Wexler, L.H., Adde, M.A., McClure, L.L. and Gress, R.E. (1994) Lymphocyte depletion during treatment with intensive chemotherapy for cancer. Blood 84, 2221–2228.PubMedGoogle Scholar
  29. Mackall, C.L., Granger, L., Sheard, M.A., Cepeda, R. and Gress, R.E. (1993) T cell regeneration after bone marrow transplantation—differential CD45 isoform expression on thymic-derived versus thymic-independent progeny. blood 82, 2585–2594.PubMedGoogle Scholar
  30. Mackall, C.L. and Gress, R.E. (1997) Pathways of T cell regeneration in mice and humans: implications for bone marrow transplantation and immunotherapy. Immunol. Rev. 157, 61–72.CrossRefPubMedGoogle Scholar
  31. Maraskovsky, E., O’Reilly, L.A., Teepe, M., Corcoran, L.M., Peschon, J.J. and Strasser, A. (1997) Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor- deficient mice but not in mutant rag-1–/– mice. Cell 89, 1011–1019.CrossRefPubMedGoogle Scholar
  32. Melchionda, F., Fry, T.J., Milliron, M.J., McKirdy, M.A., Tagaya, Y. and Mackall, C.L. (2005) Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J. Clin. Invest. 115, 1177–1187.PubMedGoogle Scholar
  33. Morrissey, P.J., Conlon, P., Charrier, K., Braddy, S., Alpert, A., Williams, D., Namen, A.E. and Mochizuki, D. (1991) Administration of IL-7 to normal mice stimulates B-lymphopoiesis and peripheral lymphadenopathy. J. Immunol. 147, 561–568.PubMedGoogle Scholar
  34. Muegge, K., Vila, M.P. and Durum, S.K. (1993) Interleukin-7: a cofactor for V(DJ) rrearrangement of the T cell receptor β gene. Science 261, 93–95.CrossRefPubMedGoogle Scholar
  35. Murphy, W.J. and Longo, D.L. (1997) The potential role of NK cells in the separation of graft-versus- tumor effects from graft-versus-host disease after allogeneic bone marrow transplantation. Immunol. Rev. 157, 167–176.CrossRefPubMedGoogle Scholar
  36. Murray, R., Suda, T., Wrighton, N., Lee, F. and Zlotnik, A. (1989) IL-7 is a growth and maintenance factor for mature and immature thymocyte subsets. Int. Immunol. 1, 526–531.CrossRefPubMedGoogle Scholar
  37. Napolitano, L.A., Grant, R.M., Deeks, S.G., Schmidt, D., De Rosa, S.C., Herzenberg, L.A., Herndier, B.G., Andersson, J. and McCune, J.M. (2001) Increased production of IL-7 accompanies HIV-1-mediated T cell depletion: implications for T cell homeostasis. Nat. Med. 7, 73–79.CrossRefPubMedGoogle Scholar
  38. Noguchi, M., Nakamura, Y., Russell, S.M., Ziegler, S.F., Tsang, M., Cao, X. and Leonard, W.J. (1993a) Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor [see comments]. Science 262, 1877–1880.CrossRefPubMedGoogle Scholar
  39. Noguchi, M., Yi, H., Rosenblatt, H.M., Filipovich, A.H., Adelstein, S., Modi, W.S., McBride, O.W. and Leonard, W.J. (1993b) Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157.CrossRefPubMedGoogle Scholar
  40. Park, J.H., Yu, Q., Erman, B., Appelbaum, J.S., Montoya-Durango, D., Grimes, H.L. and Singer, A. (2004) Suppression of IL7Ralpha transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. Immunity 21, 289–302.CrossRefPubMedGoogle Scholar
  41. Peschon, J.J., Morrissey, P.J., Grabstein, K.H., Ramsdell, F.J., Maraskovsky, E., Gliniak, B.C., Park, L.S., Ziegler, S.F., Williams, D.E. and Ware, C.B. (1994) Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960.CrossRefPubMedGoogle Scholar
  42. Plum, J., De Smedt, M., Leclercq, G., Verhasselt, B. and Vandekerckhove, B. (1996) Interleukin-7 is a critical growth factor in early human T cell development. Blood 88, 4239–4245.PubMedGoogle Scholar
  43. Prieyl, J.A. and LeBien, T.W. (1996) Interleukin 7 independent development of human B cells. Proc. Natl. Acad. Sci. USA 93, 10348–10353.CrossRefPubMedGoogle Scholar
  44. Puel, A., Ziegler, S.F., Buckley, R.H. and Leonard, W.J. (1998) Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency. Nat. Genet. 20, 394–397.CrossRefPubMedGoogle Scholar
  45. Rodewald, H.R. and Fehling, H.J. (1998) Molecular and cellular events in early thymocyte development. Adv. Immunol. 69, 1–112.CrossRefPubMedGoogle Scholar
  46. Russell, S.M., Tayebi, N., Nakajima, H., Riedy, M.C., Roberts, J.L., Aman, M.J., Migone, T.S., Noguchi, M., Markert, M.L. and Buckley, R.H. (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797–800.CrossRefPubMedGoogle Scholar
  47. Sakata, T., Iwagami, S., Tsuruta, Y., Teraoka, H., Tatsumi, Y., Kita, Y., Nishikawa, S., Takai, Y. and Fujiwara, H. (1990) Constitutive expression of interleukin-7 mRNA and production of IL-7 by a cloned murine thymic stromal cell line. J. Leukoc. Biol. 48, 205–212.PubMedGoogle Scholar
  48. Samaridis, J., Casorati, G., Traunecker, A., Iglesias, A., Gutierrez, J.C., Muller, U. and Palacios, R. (1991) Development of lymphocytes in interleukin 7-transgenic mice. Eur. J. Immunol. 21, 453–460.CrossRefPubMedGoogle Scholar
  49. Seddiki, N., Santner-Nanan, B., Martinson, J., Zaunders, J., Sasson, S., Landay, A., Solomon, M., Selby, W., Alexander, S.I., Nanan, R., Kelleher, A. and Fazekas de St Groth, B. (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 203, 1693–1700.Google Scholar
  50. Sportes, C., McCarthy, N.J., Hakim, F., Steinberg, S.M., Liewehr, D.J., Weng, D., Kummar, S., Gea-Banacloche, J., Chow, C.K., Dean, R.M., Castro, K.M., Marchigiani, D., Bishop, M.R., Fowler, D.H. and Gress, R.E. (2005) Establishing a platform for immunotherapy: clinical outcome and study of immune reconstitution after high-dose chemotherapy with progenitor cell support in breast cancer patients. Biol. Blood Marrow Transplant. 11, 472–483.CrossRefPubMedGoogle Scholar
  51. Sudo, T., Ito, M., Ogawa, Y., Iizuka, M., Kodama, H., Kunisada, T., Hayashi, S., Ogawa, M., Sakai, K. and Nishikawa, S. (1989) Interleukin 7 production and function in stromal cell-dependent B cell development. J. Exp. Med. 170, 333–338.CrossRefPubMedGoogle Scholar
  52. Sudo, T., Nishikawa, S., Ohno, N., Akiyama, N., Tamakoshi, M., Yoshida, H. and Nishikawa, S. (1993) Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc. Natl. Acad. Sci. USA 90, 9125–9129.CrossRefPubMedGoogle Scholar
  53. Talmadge, J.E., Jackson, J.D., Kelsey, L., Borgeson, C.D., Faltynek, C. and Perry, G.A. (1993) T cell reconstitution by molecular, phenotypic, and functional analysis in the thymus, bone marrow, spleen, and blood following split-dose polychemotherapy and therapeutic activity for metastatic breast cancer in mice. J. Immunother. 14, 258–268.CrossRefGoogle Scholar
  54. Tan, J.T., Dudl, E., LeRoy, E., Murray, R., Sprent, J., Weinberg, K.I. and Surh, C.D. (2001) IL-7 is critical for homeostatic proliferation and survival of naïve T cells. Proc. Natl. Acad. Sci. USA 98, 8732–8737.CrossRefPubMedGoogle Scholar
  55. Wiryana, P., Bui, T., Faltynek, C.R. and Ho, R.J. (1997) Augmentation of cell-mediated immunotherapy against herpes simplex virus by interleukins: comparison of in vivo effects of IL-2 and IL-7 on adoptively transferred T cells. Vaccine 15, 561–563.CrossRefPubMedGoogle Scholar
  56. Yeoman, H., Clark, D.R. and DeLuca, D. (1996) Development of CD4 and CD8 single positive T cells in human thymus organ culture: IL-7 promotes human T cell production by supporting immature T cells. Dev. Comp. Immunol. 20, 241–263.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Experimental Transplantation and Immunology BranchNational Cancer Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations