Skip to main content

Interleukin-7 Immunotherapy

  • Conference paper
Immune-Mediated Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 601))

Abstract

IL-7 is a member of the common γ -chain family of cytokines sharing a common γ -chain in their receptor. Beyond its long-established pivotal role in immune development, it has been more recently recognized as a critically important regulator of peripheral naïve and memory T cell homeostasis while its role in postdevelopment thymic function remains at best, poorly defined, and controversial. Its multiple immune-enhancing properties, most notably in the maintenance of T cell homeostasis, make it a very attractive candidate for immunotherapy in a wide variety of clinical situations. Following many years of rich preclinical data in murine and simian models, IL-7 is now emerging in human phase I trials as a very promising immunotherapeutic agent. Human in vivo data discussed here are derived from the phase I study initiated at the National Cancer Institute in collaboration with Cytheris, Inc., in a cohort of subjects with incurable malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akashi, K., Kondo, M., Freeden-Jeffry, U., Murray, R. and Weissman, I.L. (1997) Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89, 1033–1041.

    Article  PubMed  CAS  Google Scholar 

  • Alderson, M.R., Tough, T.W., Ziegler, S.F. and Grabstein, K.H. (1991) Interleukin 7 induces cytokine secretion and tumoricidal activity by human peripheral blood monocytes. J. Exp. Med. 173, 923–930.

    Article  PubMed  CAS  Google Scholar 

  • Appasamy, P.M. (1999) Biological and clinical implications of interleukin-7 and lymphopoiesis. Cytokines Cell Mol. Ther. 5, 25–39.

    PubMed  CAS  Google Scholar 

  • Bohm, M., Moller, P., Kalbfleisch, U., Worm, M., Czarnetzki, B.M. and Schadendorf, D. (1994) Lysis of allogeneic and autologous melanoma cells by IL-7-induced lymphokine-activated killer cells. Br. J. Cancer 70, 54–59.

    PubMed  CAS  Google Scholar 

  • Bolotin, E., Annett, G., Parkman, R. and Weinberg, K. (1999) Serum levels of IL-7 in bone marrow transplant recipients: relationship to clinical characteristics and lymphocyte count. Bone Marrow Transplant. 23, 783–788.

    Article  PubMed  CAS  Google Scholar 

  • Dittel, B.N. and LeBien, T.W. (1995) The growth response to IL-7 during normal human B cell ontogeny is restricted to B-lineage cells expressing CD34. J. Immunol. 154, 58–67.

    PubMed  CAS  Google Scholar 

  • Douek, D.C., Vescio, R.A., Betts, M.R., Brenchley, J.M., Hill, B.J., Zhang, L., Berenson, J.R., Collins, R.H. and Koup, R.A. (2000) Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T cell reconstitution. Lancet 355, 1875–1881.

    Article  PubMed  CAS  Google Scholar 

  • El Kassar, N., Lucas, P.J., Klug, D.B., Zamisch, M., Merchant, M., Bare, C.V., Choudhury, B., Sharrow, S.O., Richie, E., Mackall, C.L. and Gress, R.E. (2004) A dose effect of IL-7 on thymocyte development. Blood 104, 1419–1427.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, A.G., Burdet, C., Bunce, C., Merkenschlager, M. and Ceredig, R. (1995) Lymphoproliferative disorders in IL-7 transgenic mice: expansion of immature B cells which retain macrophage potential. Int. Immunol. 7, 415–423.

    Article  PubMed  CAS  Google Scholar 

  • Freeden-Jeffry, U., Vieira, P., Lucian, L.A., McNeil, T., Burdach, S.E. and Murray, R. (1995) Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526.

    Article  Google Scholar 

  • Fry, T.J., Connick, E., Falloon, J., Lederman, M.M., Liewehr, D.J., Spritzler, J., Steinberg, S.M., Wood, L.V., Yarchoan, R., Zuckerman, J., Landay, A. and Mackall, C.L. (2001) A potential role for interleukin-7 in T cell homeostasis. Blood 97, 2983–2990.

    Article  PubMed  CAS  Google Scholar 

  • Fry, T.J. and Mackall, C.L. (2002) Interleukin-7: from bench to clinic. Blood 99, 3892–3904.

    Article  PubMed  CAS  Google Scholar 

  • Fry, T.J., Moniuszko, M., Creekmore, S., Donohue, S.J., Douek, D.C., Giardina, S., Hecht, T.T., Hill, B.J., Komschlies, K., Tomaszewski, J., Franchini, G. and Mackall, C.L. (2003) IL-7 therapy dramatically alters peripheral T cell homeostasis in normal and SIV-infected nonhuman primates. Blood 101, 2294–2299.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, R.G., Lupton, S., Schmierer, A., Hjerrild, K.J., Jerzy, R., Clevenger, W., Gillis, S., Cosman, D. and Namen, A.E. (1989) Human interleukin 7: molecular cloning and growth factor activity on human and murine B-lineage cells. Proc. Natl. Acad. Sci. USA 86, 302–306.

    Article  PubMed  CAS  Google Scholar 

  • Hakim, F.T., Cepeda, R., Kaimei, S., Mackall, C.L., McAtee, N., Zujewski, J., Cowan, K. and Gress, R.E. (1997) Constraints on CD4 recovery postchemotherapy in adults: thymic insufficiency and apoptotic decline of expanded peripheral CD4 cells. Blood 90, 3789–3798.

    PubMed  CAS  Google Scholar 

  • Hakim, F.T. and Gress, R.E. (2005) Reconstitution of the lymphocyte compartment after lymphocyte depletion: a key issue in clinical immunology. Eur. J. Immunol. 35, 3099–3102.

    Article  PubMed  CAS  Google Scholar 

  • Hakim, F.T., Memon, S.A., Cepeda, R., Jones, E.C., Chow, C.K., Kasten-Sportes, C., Odom, J., Vance, B.A., Christensen, B.L., Mackall, C.L. and Gress, R.E. (2005) Age-dependent incidence, time course, and consequences of thymic renewal in adults. J. Clin. Invest 115, 930–939.

    PubMed  CAS  Google Scholar 

  • Hofmeister, R., Khaled, A.R., Benbernou, N., Rajnavolgyi, E., Muegge, K. and Durum, S.K. (1999) Interleukin-7: physiological roles and mechanisms of action. Cytokine Growth Factor Rev. 10, 41–60.

    Article  PubMed  CAS  Google Scholar 

  • Komschlies, K.L., Back, T.T., Gregorio, T.A., Gruys, M.E., Damia, G., Wiltrout, R.H. and Faltynek, C.R. (1994a) Effects of rhIL-7 on leukocyte subsets in mice: implications for antitumor activity. Immunol. Ser. 61, 95–104.

    PubMed  CAS  Google Scholar 

  • Komschlies, K.L., Gregorio, T.A., Gruys, M.E., Back, T.C., Faltynek, C.R. and Wiltrout, R.H. (1994b) Administration of recombinant human IL-7 to mice alters the composition of B-lineage cells and T cell subsets, enhances T cell function, and induces regression of established metastases. J. Immunol. 152, 5776–5784.

    PubMed  CAS  Google Scholar 

  • Komschlies, K.L., Grzegorzewski, K.J. and Wiltrout, R.H. (1995) Diverse immunological and hematological effects of interleukin 7: implications for clinical application. J. Leukoc. Biol. 58, 623–633.

    PubMed  CAS  Google Scholar 

  • Liu, W., Putnam, A.L., Xu-Yu, Z., Szot, G.L., Lee, M.R., Zhu, S., Gottlieb, P.A., Kapranov, P., Gingeras, T.R., Fazekas de St Groth, B., Clayberger, C., Soper, D.M., Ziegler, S.F. and Bluestone, J.A. (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701–1711.

    Google Scholar 

  • Macchi, P., Villa, A., Giliani, S., Sacco, M.G., Frattini, A., Porta, F., Ugazio, A.G., Johnston, J.A., Candotti, F. and O’Shea, J.J. (1995) Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65–68.

    Article  PubMed  CAS  Google Scholar 

  • Mackall, C.L. (2000) T cell immunodeficiency following cytotoxic antineoplastic therapy: a review. Stem Cells 18, 10–18.

    Article  PubMed  CAS  Google Scholar 

  • Mackall, C.L., Bare, C.V., Granger, L.A., Sharrow, S.O., Titus, J.A. and Gress, R.E. (1996) Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J. Immunol. 156, 4609–4616.

    PubMed  CAS  Google Scholar 

  • Mackall, C.L., Fleisher, T.A., Brown, M.R., Andrich, M.P., Chen, C.C., Feuerstein, I.M., Horowitz, M.E., Magrath, I.T., Shad, A.T., Steinberg, S.M., Wexler, L.H. and Gress, R.E. (1995) Age, thymopoiesis, and CD4+ T lymphocyte regeneration after intensive chemotherapy [see comments]. N. Engl. J. Med. 332, 143–149.

    Article  PubMed  CAS  Google Scholar 

  • Mackall, C.L., Fleisher, T.A., Brown, M.R., Andrich, M.P., Chen, C.C., Feuerstein, I.M., Magrath, I.T., Wexler, L.H., Dimitrov, D.S. and Gress, R.E. (1997) Distinctions between CD8+ and CD4+ T cell regenerative pathways result in prolonged T cell subset imbalance after intensive chemotherapy. Blood 89, 3700–3707.

    PubMed  CAS  Google Scholar 

  • Mackall, C.L., Fleisher, T.A., Brown, M.R., Magrath, I.T., Shad, A.T., Horowitz, M.E., Wexler, L.H., Adde, M.A., McClure, L.L. and Gress, R.E. (1994) Lymphocyte depletion during treatment with intensive chemotherapy for cancer. Blood 84, 2221–2228.

    PubMed  CAS  Google Scholar 

  • Mackall, C.L., Granger, L., Sheard, M.A., Cepeda, R. and Gress, R.E. (1993) T cell regeneration after bone marrow transplantation—differential CD45 isoform expression on thymic-derived versus thymic-independent progeny. blood 82, 2585–2594.

    PubMed  CAS  Google Scholar 

  • Mackall, C.L. and Gress, R.E. (1997) Pathways of T cell regeneration in mice and humans: implications for bone marrow transplantation and immunotherapy. Immunol. Rev. 157, 61–72.

    Article  PubMed  CAS  Google Scholar 

  • Maraskovsky, E., O’Reilly, L.A., Teepe, M., Corcoran, L.M., Peschon, J.J. and Strasser, A. (1997) Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor- deficient mice but not in mutant rag-1–/– mice. Cell 89, 1011–1019.

    Article  PubMed  CAS  Google Scholar 

  • Melchionda, F., Fry, T.J., Milliron, M.J., McKirdy, M.A., Tagaya, Y. and Mackall, C.L. (2005) Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J. Clin. Invest. 115, 1177–1187.

    PubMed  CAS  Google Scholar 

  • Morrissey, P.J., Conlon, P., Charrier, K., Braddy, S., Alpert, A., Williams, D., Namen, A.E. and Mochizuki, D. (1991) Administration of IL-7 to normal mice stimulates B-lymphopoiesis and peripheral lymphadenopathy. J. Immunol. 147, 561–568.

    PubMed  CAS  Google Scholar 

  • Muegge, K., Vila, M.P. and Durum, S.K. (1993) Interleukin-7: a cofactor for V(DJ) rrearrangement of the T cell receptor β gene. Science 261, 93–95.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, W.J. and Longo, D.L. (1997) The potential role of NK cells in the separation of graft-versus- tumor effects from graft-versus-host disease after allogeneic bone marrow transplantation. Immunol. Rev. 157, 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Murray, R., Suda, T., Wrighton, N., Lee, F. and Zlotnik, A. (1989) IL-7 is a growth and maintenance factor for mature and immature thymocyte subsets. Int. Immunol. 1, 526–531.

    Article  PubMed  CAS  Google Scholar 

  • Napolitano, L.A., Grant, R.M., Deeks, S.G., Schmidt, D., De Rosa, S.C., Herzenberg, L.A., Herndier, B.G., Andersson, J. and McCune, J.M. (2001) Increased production of IL-7 accompanies HIV-1-mediated T cell depletion: implications for T cell homeostasis. Nat. Med. 7, 73–79.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, M., Nakamura, Y., Russell, S.M., Ziegler, S.F., Tsang, M., Cao, X. and Leonard, W.J. (1993a) Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor [see comments]. Science 262, 1877–1880.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, M., Yi, H., Rosenblatt, H.M., Filipovich, A.H., Adelstein, S., Modi, W.S., McBride, O.W. and Leonard, W.J. (1993b) Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Park, J.H., Yu, Q., Erman, B., Appelbaum, J.S., Montoya-Durango, D., Grimes, H.L. and Singer, A. (2004) Suppression of IL7Ralpha transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. Immunity 21, 289–302.

    Article  PubMed  CAS  Google Scholar 

  • Peschon, J.J., Morrissey, P.J., Grabstein, K.H., Ramsdell, F.J., Maraskovsky, E., Gliniak, B.C., Park, L.S., Ziegler, S.F., Williams, D.E. and Ware, C.B. (1994) Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960.

    Article  PubMed  CAS  Google Scholar 

  • Plum, J., De Smedt, M., Leclercq, G., Verhasselt, B. and Vandekerckhove, B. (1996) Interleukin-7 is a critical growth factor in early human T cell development. Blood 88, 4239–4245.

    PubMed  CAS  Google Scholar 

  • Prieyl, J.A. and LeBien, T.W. (1996) Interleukin 7 independent development of human B cells. Proc. Natl. Acad. Sci. USA 93, 10348–10353.

    Article  PubMed  CAS  Google Scholar 

  • Puel, A., Ziegler, S.F., Buckley, R.H. and Leonard, W.J. (1998) Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency. Nat. Genet. 20, 394–397.

    Article  PubMed  CAS  Google Scholar 

  • Rodewald, H.R. and Fehling, H.J. (1998) Molecular and cellular events in early thymocyte development. Adv. Immunol. 69, 1–112.

    Article  PubMed  CAS  Google Scholar 

  • Russell, S.M., Tayebi, N., Nakajima, H., Riedy, M.C., Roberts, J.L., Aman, M.J., Migone, T.S., Noguchi, M., Markert, M.L. and Buckley, R.H. (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797–800.

    Article  PubMed  CAS  Google Scholar 

  • Sakata, T., Iwagami, S., Tsuruta, Y., Teraoka, H., Tatsumi, Y., Kita, Y., Nishikawa, S., Takai, Y. and Fujiwara, H. (1990) Constitutive expression of interleukin-7 mRNA and production of IL-7 by a cloned murine thymic stromal cell line. J. Leukoc. Biol. 48, 205–212.

    PubMed  CAS  Google Scholar 

  • Samaridis, J., Casorati, G., Traunecker, A., Iglesias, A., Gutierrez, J.C., Muller, U. and Palacios, R. (1991) Development of lymphocytes in interleukin 7-transgenic mice. Eur. J. Immunol. 21, 453–460.

    Article  PubMed  CAS  Google Scholar 

  • Seddiki, N., Santner-Nanan, B., Martinson, J., Zaunders, J., Sasson, S., Landay, A., Solomon, M., Selby, W., Alexander, S.I., Nanan, R., Kelleher, A. and Fazekas de St Groth, B. (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 203, 1693–1700.

    Google Scholar 

  • Sportes, C., McCarthy, N.J., Hakim, F., Steinberg, S.M., Liewehr, D.J., Weng, D., Kummar, S., Gea-Banacloche, J., Chow, C.K., Dean, R.M., Castro, K.M., Marchigiani, D., Bishop, M.R., Fowler, D.H. and Gress, R.E. (2005) Establishing a platform for immunotherapy: clinical outcome and study of immune reconstitution after high-dose chemotherapy with progenitor cell support in breast cancer patients. Biol. Blood Marrow Transplant. 11, 472–483.

    Article  PubMed  CAS  Google Scholar 

  • Sudo, T., Ito, M., Ogawa, Y., Iizuka, M., Kodama, H., Kunisada, T., Hayashi, S., Ogawa, M., Sakai, K. and Nishikawa, S. (1989) Interleukin 7 production and function in stromal cell-dependent B cell development. J. Exp. Med. 170, 333–338.

    Article  PubMed  CAS  Google Scholar 

  • Sudo, T., Nishikawa, S., Ohno, N., Akiyama, N., Tamakoshi, M., Yoshida, H. and Nishikawa, S. (1993) Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc. Natl. Acad. Sci. USA 90, 9125–9129.

    Article  PubMed  CAS  Google Scholar 

  • Talmadge, J.E., Jackson, J.D., Kelsey, L., Borgeson, C.D., Faltynek, C. and Perry, G.A. (1993) T cell reconstitution by molecular, phenotypic, and functional analysis in the thymus, bone marrow, spleen, and blood following split-dose polychemotherapy and therapeutic activity for metastatic breast cancer in mice. J. Immunother. 14, 258–268.

    Article  CAS  Google Scholar 

  • Tan, J.T., Dudl, E., LeRoy, E., Murray, R., Sprent, J., Weinberg, K.I. and Surh, C.D. (2001) IL-7 is critical for homeostatic proliferation and survival of naïve T cells. Proc. Natl. Acad. Sci. USA 98, 8732–8737.

    Article  PubMed  CAS  Google Scholar 

  • Wiryana, P., Bui, T., Faltynek, C.R. and Ho, R.J. (1997) Augmentation of cell-mediated immunotherapy against herpes simplex virus by interleukins: comparison of in vivo effects of IL-2 and IL-7 on adoptively transferred T cells. Vaccine 15, 561–563.

    Article  PubMed  CAS  Google Scholar 

  • Yeoman, H., Clark, D.R. and DeLuca, D. (1996) Development of CD4 and CD8 single positive T cells in human thymus organ culture: IL-7 promotes human T cell production by supporting immature T cells. Dev. Comp. Immunol. 20, 241–263.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Sportès .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Sportès, C., Gress, R.E. (2007). Interleukin-7 Immunotherapy. In: Shurin, M.R., Smolkin, Y.S. (eds) Immune-Mediated Diseases. Advances in Experimental Medicine and Biology, vol 601. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72005-0_35

Download citation

Publish with us

Policies and ethics