Skip to main content

New Approaches for Monitoring CTL Activity in Clinical Trials

  • Conference paper
Immune-Mediated Diseases

Abstract

We have developed a modification of the ELISPOT assay that measures Granzyme B (GrB) release from cytotoxic T lymphocytes (CTLs). The GrB ELISPOT assay is a superior alternative to the 51Cr-release assay since it is significantly more sensitive and provides an estimation of cytotoxic effector cell frequency. Additionally, unlike the IFN-γ ELISPOT assay, the GrB ELISPOT directly measures the release of a cytolytic protein. We report that the GrB ELISPOT can be utilized to measure ex vivo antigen-specific cytotoxicity of peripheral blood mononuclear cells (PBMCs) from cancer patients vaccinated with a peptide-based cancer vaccine. We compare the reactivity of patients’ PBMCs in the GrB ELISPOT, with reactivity in the tetramer, IFN-γ ELISPOT and chromium (51Cr)-release assays. Differences in immune response over all assays tested were found between patients, and four response patterns were observed. Reactivity in the GrB ELISPOT was more closely associated with cytotoxicity in the 51Cr-release assay than the tetramer or IFN-γ gLISPOT assays. We also optimized the GrB ELISPOT assay to directly measure immune responses against autologous primary tumor cells in vaccinated cancer patients. A perforin ELISPOT assay was also adapted to evaluate peptide-stimulated reactivity of PMBCs from vaccinated melanoma patients. Modifications of the ELISPOT assay described in this chapter allow a more comprehensive evaluation of low-frequency tumor-specific CTLs and their specific effector functions and can provide a valuable insight into immune responses in cancer vaccine trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman, J., Moss, P., Goulder, P., Barouch, D., McHeyzer-Williams, M., Bell, J., McMichael, A. and Davis, M. (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96.

    Article  PubMed  CAS  Google Scholar 

  • Bachmann, M., Barner, M., Viola, A. and Kopf, M. (1999) Distinct kinetics of cytokine production and cytolysis in effector and memory T cells after viral infection. Eur. J. Immunol. 29, 291–299.

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt, J., Hester, S., Lapham, C. and Argon, Y. (1990) The lytic granules of natural killer cells are dual-function organelles combining secretory and pre-lysosomal compartments. J Cell. Biol. 111, 2327–2340.

    Article  PubMed  CAS  Google Scholar 

  • Burton, C., Gotch, F. and Imami, N. (2006) Rapid qualitative and quantitative analysis of T cell responses in HIV-1-infected individuals receiving successful HAART and HIV-1 sero-negative controls: concomitant assessment of perforin, IFN-gamma and IL-4 secretion. J. Immunol. Methods 308, 216–230.

    Article  PubMed  CAS  Google Scholar 

  • Davis, J., Smyth, M. and Trapani, J. (2001) Granzyme A and B-deficient killer lymphocytes are defective in eliciting DNA fragmentation but retain potent in vivo anti-tumor capacity. Eur. J. Immunol. 31, 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Dunbar, P.R., Smith, C.L., Chao, D., Salio, M., Shepherd, D., Mirza, F., Lipp, M., Lanzavecchia, A., Sallusto, F., Evans, A., Russell-Jones, R., Harris, A.L. and Cerundolo, V. (2000) A shift in the phenotype of melan-A-specific CTL identifies melanoma patients with an active tumor-specific immune response. J. Immunol. 165, 6644–6652.

    PubMed  CAS  Google Scholar 

  • Faure, F., Even, J., and Kourilsky, P. (1998) Tumor-specific immune response: current in vitro analyses may not reflect the in vivo immune status. Crit. Rev. Immunol. 18, 77–86.

    PubMed  CAS  Google Scholar 

  • Froelich, C., Hanna, W., Poirier, G., Duriez, P., D’Amours, D., Salvosen, G.S., Alnemri, E., Earnshaw, W. and Shah, G. (1996) Granzyme B/perforin-mediated apoptosis of Jurkat cells results in cleavage of poly(ADP-ribose) polymerase to the 89-kDa apoptotic fragment and less abundant 64-kDa fragment. Biochem. Biophys. Res. Commun. 227, 658–665.

    Article  PubMed  CAS  Google Scholar 

  • Hasenkamp, J., Borgerding, A., Wulf, G., Uhrberg, M., Jung, W., Dingeldein, S., Truemper, L. and Glass, B. (2006) Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int. J. Oncol. 28, 855–861.

    Google Scholar 

  • Jans, D., Jans, P., Briggs, L., Sutton, V. and Trapani, J. (1996) Nuclear transport of granzyme B (fragmentin-2). Dependence of perforin in vivo and cytosolic factors in vitro. J. Biol. Chem. 27, 30781–30789.

    Google Scholar 

  • Keilholz, U., Weber, J., Finke, J., Gabrilovich, D., Kast, W., Disis, M., Kirkwood, J., Scheibenbogen, C., Schlom, J., Maino, V., Lyerly, H., Lee, P., Storkus, W., Marincola, F., Worobec, A. and Atkins, M. (2002) Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the Society for Biological Therapy. J. Immunother. 25, 97–138.

    Article  PubMed  Google Scholar 

  • Kleen, T., Asaad, R., Landry, S., Boehm, B. and Tary-Lehmann, M. (2004) Tc1 effector diversity shows dissociated expression of granzyme B and interferon-gamma in HIV infection. AIDS 18, 383–392.

    Article  PubMed  CAS  Google Scholar 

  • Kwak, L. (2003) Translational development of active immunotherapy for hematologic malignancies. Semin. Oncol. 30, 17–22.

    Article  PubMed  CAS  Google Scholar 

  • Malyguine, A., Strobl, S., Shafer-Weaver, K., Ulderich, T., Troke, A., Baseler, M., Kwak, L. and Neelapu, S. (2004) A modified human ELISPOT assay to detect specific responses to primary tumor cell targets. J. Transl. Med. 2, 9.

    Article  PubMed  Google Scholar 

  • Masopust, D., Vezys, V., Marzo, A.L. and Lefrancois, L. (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417.

    Article  PubMed  CAS  Google Scholar 

  • Medema, J., Jong, J.d., Peltenburg, L., Verdegaal, E., Gorter, A., Bres, S., Franken, K., Hahne, M., Albar, J., Melief, C. and Offringa, R. (2001) Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc. Natl. Acad. Sci. USA 98, 11515–11520.

    Article  PubMed  CAS  Google Scholar 

  • Motyka, B., Korbutt, G., Pinkoski, M., Heibein, J., Caputo, A., Hobman, M., Barry, M., Shostak, I., Sawchuk, T., Holmes, C., Gauldie, J. and Bleackley, R. (2000) Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103, 491–500.

    Article  PubMed  CAS  Google Scholar 

  • Powell, D.J., Jr. and Rosenberg, S.A. (2004) Phenotypic and functional maturation of tumor antigen-reactive CD8+ T lymphocytes in patients undergoing multiple course peptide vaccination. J. Immunother. 27, 36–47.

    Article  PubMed  CAS  Google Scholar 

  • Rininsland, F., Helms, T., Asaad, R., Boehm, B. and Tary-Lehmann, M. (2000) Granzyme B ELISPOT assay for ex vivo measurements of T cell immunity. J. Immunol Methods 240, 143–155.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, S. (2001) Progress in human tumour immunology and immunotherapy. Nature 411, 380–384.

    Article  PubMed  CAS  Google Scholar 

  • Sayers, T., Wiltrout, T., Sowder, R., Munger, W., Smyth, M. and Henderson, L. (1992) Purification of a factor from the granules of a rat natural killer cell line (RNK) that reduces tumor cell growth and changes tumor morphology. Molecular identity with a granule serine protease (RNKP-1). J. Immunol. 148, 292–300.

    PubMed  CAS  Google Scholar 

  • Scheibenbogen, C., Lee, K.H., Mayer, S., Stevanovic, S., Moebius, U., Herr, W., Rammensee, H. and Keilholz, U. (1997a) A sensitive ELISPOT assay for detection of CD8+ T lymphocytes specific for HLA class I-binding peptide epitopes derived from influenza proteins in the blood of healthy donors and melanoma patients. Clin. Cancer Res. 3, 221–226.

    PubMed  CAS  Google Scholar 

  • Scheibenbogen, C., Lee, K., Stevanovic, S., Witzens, M., Willhauck, M., Waldmann, V., Naeher, H., Rammensee, H. and Keilholz, U. (1997b) Analysis of the T cell response to tumor and viral peptide antigens by an ifNγ -ELISPOT assay. Int. J. Cancer 71, 932–936.

    Article  PubMed  CAS  Google Scholar 

  • Shafer-Weaver, K., Rosenberg, S., Strobl, S., Alvord, G., Baseler, M. and Malyguine, A. (2006) Application of the granzyme B ELISPOT assay for monitoring cancer vaccine trials. J. Immunother. 29, 328–335.

    Article  PubMed  CAS  Google Scholar 

  • Shafer-Weaver, K., Sayers, T., Strobl, S., Derby, E., Ulderich, T., Baseler, M. and Malyguine, A. (2003) The granzyme B ELISPOT assay: an alternative to the 51Cr-release assay for monitoring cell-mediated cytotoxicity. J. Transl. Med. 1, 14.

    Article  PubMed  Google Scholar 

  • Shang, X., Chen, H., Zhang, H., Pang, X., Qiao, H., Peng, J., Qin, L., Fei, R., Mei, M., Leng, X., Gnjatic, S., Ritter, G., Simpson, A., Old, L. and Chen, W. (2004) The spontaneous CD8+ T cell response to HLA-A2-restricted NY-ESO-1b peptide in hepatocellular carcinoma patients. Clin. Cancer Res. 10, 6946–6955.

    Article  PubMed  CAS  Google Scholar 

  • Shi, L., Mai, S., Israels, S., Browne, K., Trapani, J. and Greenberg, A. (1997) Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J. Exp. Med. 185, 855–866.

    Article  PubMed  CAS  Google Scholar 

  • Smyth, M., Kelly, J., Sutton, V., Davis, J., Browne, K., Sayers, T. and Trapani, J. (2001) Unlocking the secrets of cytotoxic granule proteins. J. Leukoc. Biol. 70, 18–29.

    PubMed  CAS  Google Scholar 

  • Smyth, M., Street, S. and Trapani, J. (2003) Cutting Edge: granzymes A and B are not essential for perforin-mediated tumor rejection. J. Immunol. 171, 515–518.

    PubMed  CAS  Google Scholar 

  • Smyth, M., Thia, K., Street, S., MacGregor, D., Godfrey, D. and Trapani, J. (2000) Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192, 755–760.

    Article  PubMed  CAS  Google Scholar 

  • Smyth, M. and Trapani, J. (1995) Granzymes: exogenous proteinases that induce target cell apoptosis. Immunol. Today 16, 202–206.

    Article  PubMed  CAS  Google Scholar 

  • thor Straten, P., Kirkin, A.F., Siim, E., Dahlstrom, K., Drzewiecki, K.T., Seremet, T., Zeuthen, J., Becker, J.C. and Guldberg, P. (2000) Tumor infiltrating lymphocytes in melanoma comprise high numbers of T cell clonotypes that are lost during in vitro culture. Clin. Immunol. 96, 94–99.

    Article  PubMed  CAS  Google Scholar 

  • Trapani, J. and Smyth, M. (2002) Functional significance of the perforin/granzyme cell death pathway. Nat. Rev. Immunol. 2, 735–747.

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri, G. and Perussia, B. (1984) Human natural killer cells: biologic and pathologic aspects. Lab. Invest. 50, 489–513.

    PubMed  CAS  Google Scholar 

  • Valmori, D., Scheibenbogen, C., Dutoit, V., Nagorsen, D., Asemissen, A.M., Rubio-Godoy, V., Rimoldi, D., Guillaume, P., Romero, P., Schadendorf, D., Lipp, M., Dietrich, P.Y., Thiel, E., Cerottini, J.C., Lienard, D. and Keilholz, U. (2002) Circulating tumor-reactive CD8(+) T cells in melanoma patients contain a CD45RA(+)CCR7(–) effector subset exerting ex vivo tumor-specific cytolytic activity. Cancer Res. 62, 1743–1750.

    PubMed  CAS  Google Scholar 

  • Wang, R. and Rosenberg, S. (1999) Human tumor antigens for cancer vaccine development. Immunol. Rev. 170, 85–100.

    Article  PubMed  CAS  Google Scholar 

  • Wong, R., Lau, R., Chang, J., Kuus-Reichel, T., Brichard, V., Bruck, C. and Weber, J. (2004) Immune responses to a class II helper peptide epitope in patients with stage III/IV resected melanoma. Clin. Cancer Res. 10, 5004–5013.

    Article  PubMed  CAS  Google Scholar 

  • Zuber, B., Levitsky, V., Jonsson, G., Paulie, S., Samarina, A., Grundstrom, S., Metkar, S., Norell, H., Callender, G., Froelich, C. and Ahlborg, N. (2005) Detection of human perforin by ELISpot and ELISA: ex vivo identification of virus-specific cells. J. Immunol. Methods 302, 13–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoli Malyguine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Malyguine, A., Strobl, S., Zaritskaya, L., Baseler, M., Shafer-Weaver, K. (2007). New Approaches for Monitoring CTL Activity in Clinical Trials. In: Shurin, M.R., Smolkin, Y.S. (eds) Immune-Mediated Diseases. Advances in Experimental Medicine and Biology, vol 601. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72005-0_29

Download citation

Publish with us

Policies and ethics