Memory T Cells in Allograft Rejection

  • Anna Valujskikh
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 601)


T cell repertoire of many humans contains high frequencies of memory T cells specific for alloantigens. The increasing evidence implicates these cells as a barrier to allograft survival and to the induction of transplantation tolerance. This review discusses several aspects of memory T cell immunobiology pertinent to their role in transplantation.


Allograft Rejection Allograft Survival Secondary Lymphoid Organ S1P1 Receptor Costimulatory Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, A.B., Williams, M.A., Jones, T.R., Shirasugi, N., Durham, M.M., Kaech, S.M., Wherry, E.J., Onami, T., Lanier, J.G., Kokko, K.E., Pearson, T.C., Ahmed, R. and Larsen, C.P. (2003) Heterologous immunity provides a potent barrier to transplantation tolerance. J. Clin. Invest. 111, 1887–1895.PubMedGoogle Scholar
  2. Bradley, L.M., Harbertson, J., Freschi, G.C., Kondrack, R. and Linton, P.J. (2000) Regulation of development and function of memory CD4 subsets. Immunol. Res. 21, 149–158.CrossRefPubMedGoogle Scholar
  3. Brehm, M.A., Markees, T.G., Daniels, K.A., Greiner, D.L., Rossini, A.A. and Welsh, R.M. (2003) Direct visualization of cross-reactive effector and memory allo-specific CD8 T cells generated in response to viral infections. J. Immunol. 170, 4077–4086.PubMedGoogle Scholar
  4. Cecka, J.M. (2001) The UNOS renal transplant registry. Clin. Transpl., 1–18.Google Scholar
  5. Chen, Y., Heeger, P.S. and Valujskikh, A. (2004) In vivo helper functions of alloreactive memory CD4+ T cells remain intact despite donor-specific transfusion and anti-CD40 ligand therapy. J. Immunol. 172, 5456–5466.PubMedGoogle Scholar
  6. Chi, H. and Flavell, R.A. (2005) Cutting edge: regulation of T cell trafficking and primary immune responses by sphingosine 1-phosphate receptor 1. J. Immunol. 174, 2485–2488.PubMedGoogle Scholar
  7. Cho, B.K., Wang, C., Sugawa, S., Eisen, H.N. and Chen, J. (1999) Functional differences between memory and naïve CD8 T cells. Proc. Natl. Acad. Sci. USA 96, 2976–2981.CrossRefPubMedGoogle Scholar
  8. Croft, M., Bradley, L.M. and Swain, S.L. (1994) Naïve versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J. Immunol. 152, 2675–2685.PubMedGoogle Scholar
  9. Dutton, R.W., Bradley, L.M. and Swain, S.L. (1998) T cell memory. Annu. Rev. Immunol. 16, 201–223.CrossRefPubMedGoogle Scholar
  10. Flynn, K. and Mullbacher, A. (1996) Memory alloreactive cytotoxic T cells do not require costimulation for activation in vitro. Immunol. Cell. Biol. 74, 413–420.CrossRefPubMedGoogle Scholar
  11. Garcia, S., DiSanto, J. and Stockinger, B. (1999) Following the development of a CD4 T cell response in vivo: from activation to memory formation. Immunity 11, 163–171.CrossRefPubMedGoogle Scholar
  12. Goetzl, E.J. and Graler, M.H. (2004) Sphingosine 1-phosphate and its type 1 G protein-coupled receptor: trophic support and functional regulation of T lymphocytes. J. Leukoc. Biol. 76, 30–35.CrossRefPubMedGoogle Scholar
  13. Gordon, R.D., Mathieson, B.J., Samelson, L.E., Boyse, E.A. and Simpson, E. (1976) The effect of allogeneic presensitization on H-Y graft survival and in vitro cell-mediated responses to H-y antigen. J. Exp. Med. 144, 810–820.CrossRefPubMedGoogle Scholar
  14. Harada, H., Salama, A.D., Sho, M., Izawa, A., Sandner, S.E., Ito, T., Akiba, H., Yagita, H., Sharpe, A.H., Freeman, G.J. and Sayegh, M.H. (2003) The role of the ICOS-B7h T cell costimulatory pathway in transplantation immunity. J. Clin. Invest. 112, 234–243.PubMedGoogle Scholar
  15. Heeger, P.S., Greenspan, N.S., Kuhlenschmidt, S., Dejelo, C., Hricik, D.E., Schulak, J.A. and Tary-Lehmann, M. (1999) Pretransplant frequency of donor-specific, IFN-gamma-producing lymphocytes is a manifestation of immunologic memory and correlates with the risk of posttransplant rejection episodes. J. Immunol. 163, 2267–2275.PubMedGoogle Scholar
  16. Hla, T. (2004) Physiological and pathological actions of sphingosine 1-phosphate. Semin. Cell. Dev. Biol. 15, 513–520.CrossRefPubMedGoogle Scholar
  17. Hla, T., Lee, M.J., Ancellin, N., Paik, J.H. and Kluk, M.J. (2001) Lysophospholipids—receptor revelations. Science 294, 1875–1878.CrossRefPubMedGoogle Scholar
  18. Iwai, H., Kozono, Y., Hirose, S., Akiba, H., Yagita, H., Okumura, K., Kohsaka, H., Miyasaka, N. and Azuma, M. (2002) Amelioration of collagen-induced arthritis by blockade of inducible costimulator-B7 homologous protein costimulation. J. Immunol. 169, 4332–4339.PubMedGoogle Scholar
  19. Kaech, S.M., Wherry, E.J. and Ahmed, R. (2002) Effector and memory T cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262.CrossRefPubMedGoogle Scholar
  20. Kassiotis, G. and Stockinger, B. (2004) Anatomical heterogeneity of memory CD4+ T cells due to reversible adaptation to the microenvironment. J. Immunol. 173, 7292–7298.PubMedGoogle Scholar
  21. Kedl, R.M. and Mescher, M.F. (1998) Qualitative differences between Naïve and memory T cells make a major contribution to the more rapid and efficient memory CD8+ T cell response. J. Immunol. 161, 674–683.PubMedGoogle Scholar
  22. Khayyamian, S., Hutloff, A., Buchner, K., Grafe, M., Henn, V., Kroczek, R.A. and Mages, H.W. (2002) ICOS-ligand, expressed on human endothelial cells, costimulates Th1 and Th2 cytokine secretion by memory CD4+ T cells. Proc. Natl. Acad. Sci. USA 99, 6198–6203.CrossRefPubMedGoogle Scholar
  23. Lanzavecchia, A. and Sallusto, F. (2001) Antigen decoding by T lymphocytes: from synapses to fate determination. Nat. Immunol. 2, 487–492.CrossRefPubMedGoogle Scholar
  24. Lanzavecchia, A. and Sallusto, F. (2002) Opinion-decision making in the immune system: progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol. 2, 982–987.CrossRefPubMedGoogle Scholar
  25. Lanzavecchia, A. and Sallusto, F. (2005) Understanding the generation and function of memory T cell subsets. Curr. Opin. Immunol. 17, 326–332.CrossRefPubMedGoogle Scholar
  26. Lindahl, K.F. and Wilson, D.B. (1977) Histocompatibility antigen-activated cytotoxic T lymphocytes. I. Estimates of the absolute frequency of killer cells generated in vitro. J. Exp. Med. 145, 500–507.Google Scholar
  27. Lo, C.G., Xu, Y., Proia, R.L. and Cyster, J.G. (2005) Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J. Exp. Med. 201, 291–301.CrossRefPubMedGoogle Scholar
  28. London, C.A., Lodge, M.P. and Abbas, A.K. (2000) Functional responses and costimulator dependence of memory CD4+ T cells. J. Immunol. 164, 265–272.PubMedGoogle Scholar
  29. Masopust, D., Vezys, V., Marzo, A.L. and Lefrancois, L. (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417.CrossRefPubMedGoogle Scholar
  30. Matesic, D., Lehmann, P.V. and Heeger, P.S. (1998) High-resolution characterization of cytokine-producing alloreactivity in Naïve and allograft-primed mice. Transplantation 65, 906–914.CrossRefPubMedGoogle Scholar
  31. Matloubian, M., Lo, C.G., Cinamon, G., Lesneski, M.J., Xu, Y., Brinkmann, V., Allende, M.L., Proia, R.L. and Cyster, J.G. (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360.CrossRefPubMedGoogle Scholar
  32. Mullbacher, A. and Flynn, K. (1996) Aspects of cytotoxic T cell memory. Immunol. Rev. 150, 113–127.CrossRefPubMedGoogle Scholar
  33. Nedelea, M., Dima, S., Sandru, G. and Nicolaescu, V. (1975) A comparative study of allogenic “first set” and “second set” skin rejection in mice. Morphol. Embryol. 21, 53–57.Google Scholar
  34. Ozkaynak, E., Gao, W., Shemmeri, N., Wang, C., Gutierrez-Ramos, J.C., Amaral, J., Qin, S., Rottman, J.B., Coyle, A.J. and Hancock, W.W. (2001) Importance of ICOS-B7RP-1 costimulation in acute and chronic allograft rejection. Nat. Immunol. 2, 591–596.CrossRefPubMedGoogle Scholar
  35. Pantenburg, B., Heinzel, F., Das, L., Heeger, P.S. and Valujskikh, A. (2002) T cells primed by Leishmania major infection cross-react with alloantigens and alter the course of allograft rejection. J. Immunol. 169, 3686–3693.PubMedGoogle Scholar
  36. Perrin, P.J., Lovett-Racke, A., Phillips, S.M. and Racke, M.K. (1999) Differential requirements of Naïve and memory T cells for CD28 costimulation in autoimmune pathogenesis. Histol. Histopathol. 14, 1269–1276.PubMedGoogle Scholar
  37. Pihlgren, M., Dubois, P.M., Tomkowiak, M., Sjogren, T. and Marvel, J. (1996) Resting memory CD8+ T cells are hyperreactive to antigenic challenge in vitro. J. Exp. Med. 184, 2141–2151.CrossRefPubMedGoogle Scholar
  38. Pinschewer, D.D., Ochsenbein, A.F., Odermatt, B., Brinkmann, V., Hengartner, H. and Zinkernagel, R.M. (2000) FTY720 immunosuppression impairs effector T cell peripheral homing without affecting induction, expansion, and memory. J. Immunol. 164, 5761–5770.PubMedGoogle Scholar
  39. Ravkov, E.V., Myrick, C.M. and Altman, J.D. (2003) Immediate early effector functions of virus-specific CD8+CCR7+ memory cells in humans defined by HLA and CC chemokine ligand 19 tetramers. J. Immunol. 170, 2461–2468.PubMedGoogle Scholar
  40. Reinhardt, R.L., Khoruts, A., Merica, R., Zell, T. and Jenkins, M.K. (2001) Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105.CrossRefPubMedGoogle Scholar
  41. Rogers, P.R., Dubey, C. and Swain, S.L. (2000) Qualitative changes accompany memory T cell generation: faster, more effective responses at lower doses of antigen. J. Immunol. 164, 2338–2346.PubMedGoogle Scholar
  42. Sallusto, F., Lenig, D., Forster, R., Lipp, M. and Lanzavecchia, A. (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712.CrossRefPubMedGoogle Scholar
  43. Seder, R.A. and Ahmed, R. (2003) Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat. Immunol. 4, 835–842.CrossRefPubMedGoogle Scholar
  44. Sporici, R.A., Beswick, R.L., von Allmen, C., Rumbley, C.A., Hayden-Ledbetter, M., Ledbetter, J.A. and Perrin, P.J. (2001) ICOS ligand costimulation is required for T cell encephalitogenicity. Clin. Immunol. 100, 277–288.CrossRefPubMedGoogle Scholar
  45. Sprent, J. and Surh, C.D. (2002) T cell memory. Annu. Rev. Immunol. 20, 551–579.CrossRefPubMedGoogle Scholar
  46. Suchin, E.J., Langmuir, P.B., Palmer, E., Sayegh, M.H., Wells, A.D. and Turka, L.A. (2001) Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J. Immunol. 166, 973–981.PubMedGoogle Scholar
  47. Swain, S.L. (1994) Generation and in vivo persistence of polarized Th1 and Th2 memory cells. Immunity 1, 543–552.CrossRefPubMedGoogle Scholar
  48. Tafuri, A., Shahinian, A., Bladt, F., Yoshinaga, S.K., Jordana, M., Wakeham, A., Boucher, L.M., Bouchard, D., Chan, V.S., Duncan, G., Odermatt, B., Ho, A., Itie, A., Horan, T., Whoriskey, J.S., Pawson, T., Penninger, J.M., Ohashi, P.S. and Mak, T.W. (2001) ICOS is essential for effective T-helper-cell responses. Nature 409, 105–109.CrossRefPubMedGoogle Scholar
  49. Taylor, D.K., Neujahr, D. and Turka, L.A. (2004) Heterologous immunity and homeostatic proliferation as barriers to tolerance. Curr. Opin. Immunol. 16, 558–564.CrossRefPubMedGoogle Scholar
  50. Unsoeld, H., Krautwald, S., Voehringer, D., Kunzendorf, U. and Pircher, H. (2002) Cutting edge: CCR7+ and CCR7 – memory T cells do not differ in immediate effector cell function. J. Immunol. 169, 638–641.PubMedGoogle Scholar
  51. Valujskikh, A., Pantenburg, B. and Heeger, P.S. (2002) Primed allospecific T cells prevent the effects of costimulatory blockade on prolonged cardiac allograft survival in mice. Am. J. Transplant. 2, 501–509.CrossRefPubMedGoogle Scholar
  52. Watschinger, B., Gallon, L., Carpenter, C.B. and Sayegh, M.H. (1994) Mechanisms of allo-recognition. Recognition by in vivo-primed T cells of specific major histocompatibility complex polymorphisms presented as peptides by responder antigen-presenting cells. Transplantation 57, 572–576.Google Scholar
  53. Wekerle, T., Kurtz, J., Bigenzahn, S., Takeuchi, Y. and Sykes, M. (2002) Mechanisms of transplant tolerance induction using costimulatory blockade. Curr. Opin. Immunol. 14, 592–600.CrossRefPubMedGoogle Scholar
  54. Wherry, E.J., Teichgraber, V., Becker, T.C., Masopust, D., Kaech, S.M., Antia, R., von Andrian, U.H. and Ahmed, R. (2003) Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234.CrossRefPubMedGoogle Scholar
  55. Xie, J.H., Nomura, N., Koprak, S.L., Quackenbush, E.J., Forrest, M.J. and Rosen, H. (2003) Sphingosine-1-phosphate receptor agonism impairs the efficiency of the local immune response by altering trafficking of Naïve and antigenActivated CD4(+) T cells. J. Immunol. 170, 3662–3670.PubMedGoogle Scholar
  56. Yoshinaga, S.K., Whoriskey, J.S., Khare, S.D., Sarmiento, U., Guo, J., Horan, T., Shih, G., Zhang, M., Coccia, M.A., Kohno, T., Tafuri-Bladt, A., Brankow, D., Campbell, P., Chang, D., Chiu, L., Dai, T., Duncan, G., Elliott, G.S., Hui, A., McCabe, S.M., Scully, S., Shahinian, A., Shaklee, C.L., Van, G. and Mak, T.W. (1999) T cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832.CrossRefPubMedGoogle Scholar
  57. Zhang, Q., Chen, Y., Fairchild, R.L., Heeger, P.S. and Valujskikh, A. (2006) Lymphoid sequestration of alloreactive memory CD4 T cells promotes cardiac allograft survival. J. Immunol. 176, 770–777.PubMedGoogle Scholar
  58. Zimmermann, C., Prevost-Blondel, A., Blaser, C. and Pircher, H. (1999) Kinetics of the response of Naïve and memory CD8 T cells to antigen: similarities and differences. Eur. J. Immunol. 29, 284–290.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of ImmunologyThe Cleveland Clinic FoundationClevelandUSA

Personalised recommendations