Infective, Neoplastic, and Homeostatic Sequelae of the Loss of Perforin Function in Humans

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 601)


Perforin, a pore-forming protein toxin synthesized and stored in the cytoplasmic vesicles of cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, is secreted when these effector lymphocytes encounter virus-infected or neoplastic cells. Perforin is encoded by a single-copy gene and is critical for immune homeostasis and defense of the organism against intracellular sepsis. A complete deficiency of perforin expression in either mice or humans is associated with a syndrome of immune insufficiency and severely deregulated lymphoid homeostasis. Humans who inherit inactivating mutations of perforin or defects in various parts of the cellular machinery that delivers perforin to the target cell suffer from familial hemophagocytic lymphohistiocytosis (FHL), a fatal condition necessitating bone marrow transplantation, usually in infancy. In mice, a high incidence of spontaneous B cell lymphoma has also been noted as the animals age. Across human populations, a number of polymorphisms that result in measurable, but suboptimal CTL activity have been noted, and some of these predispose to attenuated FHL or susceptibility to infectious disease, but in many cases, to no discernible disease predisposition. This chapter discusses the significance of human perforin polymorphisms, particularly those associated with diseases other than FHL, and recent advances in our understanding of perforin biology and function.


Hemophagocytic Lymphohistiocytosis Cytotoxic Granule Familial Hemophagocytic Lymphohistiocytosis Perforin Gene Target Cell Death 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bird, C.H., Sun, J., Ung, K., Karambalis, D., Whisstock, J.C., Trapani, J.A. and Bird, P.I. (2005) Cationic sites on granzyme B contribute to cytotoxicity by promoting its uptake into target cells. Mol. Cell. Biol. 25, 7854–7867.CrossRefPubMedGoogle Scholar
  2. Busiello, R., Adriani, M., Locatelli, F., Galgani, M., Fimiani, G., Clementi, R., Ursini, M.V., Racioppi, L. and Pignata, C. (2004) Atypical features of familial hemophagocytic lymphohistiocytosis. Blood 103, 4610–4612.CrossRefPubMedGoogle Scholar
  3. Clementi, R., Emmi, L., Maccario, R., Liotta, F., Moretta, L., Danesino, C. and Arico, M. (2002) Adult onset and atypical presentation of hemophagocytic lymphohistiocytosis in siblings carrying PRF1 mutations. Blood 100, 2266–2267.CrossRefPubMedGoogle Scholar
  4. Clementi, R., Locatelli, F., Dupre, L., Garaventa, A., Emmi, L., Bregni, M., Cefalo, G., Moretta, A., Danesino, C., Comis, M., Pession, A., Ramenghi, U., Maccario, R., Arico, M. and Roncarolo, M.G. (2005) A proportion of patients with lymphoma may harbor mutations of the perforin gene. Blood 105, 4424–4428.CrossRefPubMedGoogle Scholar
  5. Clementi, R., Chiocchetti, A., Cappellano, G., Cerutti, E., Ferretti, M., Orilieri, E., Dianzani, I., Ferrarini, M., Bregni, M., Danesino, C., Bozzi, V., Putti, M.C., Cerutti, F., Cometa, A., Locatelli, F., Maccario, R., Ramenghi, U. and Dianzani, U. (2006) Variations of the perforin gene in patients with autoimmunity/lymphoproliferation and defective fas function. Blood 108, 3079–3084.CrossRefPubMedGoogle Scholar
  6. Henter, J.I., Arico, M., Elinder, G., Imashuku, S. and Janka, G. (1998) Familial hemophagocytic lymphohistiocytosis. Primary hemophagocytic lymphohistiocytosis. Hematol. Oncol. Clin. North. Am. 12, 417–433.CrossRefPubMedGoogle Scholar
  7. Henter, J.I., Samuelsson-Horne, A., Arico, M., Egeler, R.M., Elinder, G., Filipovich, A.H., Gadner, H., Imashuku, S., Komp, D., Ladisch, S., Webb, D. and Janka, G. (2002) Treatment of hemophagocytic lymphohistiocytosis with HLH-94 immunochemotherapy and bone marrow transplantation. Blood 100, 2367–2373.CrossRefPubMedGoogle Scholar
  8. Hwang, J.Y., Ohira, T., Hirono, I. and Aoki, T. (2004). A pore-forming protein, perforin, from a non-mammalian organism, Japanese flounder, Paralichthys olivaceus. Immunogenetics 56, 360–367.CrossRefPubMedGoogle Scholar
  9. Janka, G.E. (1989) Familial hemophagocytic lymphohistiocytosis: diagnostic problems and differential diagnosis. Pediatr. Hematol. Oncol. 6, 219–225.CrossRefPubMedGoogle Scholar
  10. Janka, G. and Zur Stadt, U. (2005) Familial and acquired hemophagocytic lymphohistiocytosis. Hematology (Am. Soc. Hematol. Educ. Program) 82–88.Google Scholar
  11. Kagi, D., Ledermann, B., Burki, K., Seiler, P., Odermatt, B., Olsen, K.J., Podack, E.R., Zinkernagel, R.M. and Hengartner, H. (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37.CrossRefPubMedGoogle Scholar
  12. Katano, H., Ali, M.A., Patera, A.C., Catalfamo, M., Jaffe, E.S., Kimura, H., Dale, J.K., Straus, S.E. and Cohen, J.I. (2004) Chronic active Epstein-Barr virus infection associated with mutations in perforin that impair its maturation. Blood 103, 1244–1252.CrossRefPubMedGoogle Scholar
  13. Katano, H. and Cohen, J.I. (2005) Perforin and lymphohistiocytic proliferative disorders. Br. J. Haematol. 128, 739–750.CrossRefPubMedGoogle Scholar
  14. Lichtenheld, M.G., Olsen, K.J., Lu, P., Lowrey, D.M., Hameed, A., Hengartner, H. and Podack, E.R. (1988) Structure and function of human perforin. Nature 335, 448–451.CrossRefPubMedGoogle Scholar
  15. Lieberman, J. and Fan, Z. (2003) Nuclear war: the granzyme A-bomb. Curr. Opin. Immunol. 15, 553–559.CrossRefPubMedGoogle Scholar
  16. Liu, C.C., Walsh, C.M. and Young, J.D. (1995) Perforin: structure and function. Immunol. Today 16, 194–201.CrossRefPubMedGoogle Scholar
  17. Mancebo, E., Allende, L.M., Guzman, M., Paz-Artal, E., Gil, J., Urrea-Moreno, R., Fernandez-Cruz, E., Gaya, A., Calvo, J., Arbos, A., Duran, M.A., Canet, R., Balanzat, J., Udina, M.A. and Vercher, F.J. (2006) Familial hemophagocytic lymphohistiocytosis in an adult patient homozygous for A91V in the perforin gene, with tuberculosis infection. Haematologica 91, 1257–1260.PubMedGoogle Scholar
  18. Mehta, P.A., Davies, S.M., Kumar, A., Devidas, M., Lee, S., Zamzow, T., Elliott, J., Villanueva, J., Pullen, J., Zewge, Y. and Filipovich, A. (2006) Perforin polymorphism A91V and susceptibility to B-precursor childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Leukemia 20, 1539–1541.CrossRefPubMedGoogle Scholar
  19. Menager, M.M., Menasche, G., Romao, M., Knapnougel, P., Ho, C.H., Garfa, M., Raposo, G., Feldmann, J., Fischer, A. and de Saint Basile, G. (2007) Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4. Nat. Immunol. 8, 257–267.CrossRefPubMedGoogle Scholar
  20. Rochel, N. and Cowan, J. (1996) Negative cooperativity exhibited by the lytic amino-terminal domain of human perforin: implications for perforin-mediated cell lysis. Chem. Biol. 3, 31–36.CrossRefPubMedGoogle Scholar
  21. Santoro, A., Cannella, S., Trizzino, A., Lo Nigro, L., Corsello, G. and Arico, M. (2005) A single amino acid change A91V in perforin: a novel, frequent predisposing factor to childhood acute lymphoblastic leukemia? Haematologica 90, 697–698.PubMedGoogle Scholar
  22. Shiver, J.W. and Henkart, P.A. (1991) A noncytotoxic mast cell tumor line exhibits potent IgE-dependent cytotoxicity after transfection with the cytolysin/perforin gene. Cell 64, 1175–1181.CrossRefPubMedGoogle Scholar
  23. Smyth, M.J., Kelly, J.M., Sutton, V.R., Davis, J.E., Browne, K.A., Sayers, T. and Trapani, J.A. (2001) Unlocking the secrets of cytotoxic granule proteins. J. Leukoc. Biol. 70, 18–29.PubMedGoogle Scholar
  24. Stepp, S.E., Dufourcq-Lagelouse, R., Le Deist, F., Bhawan, S., Certain, S., Mathew, P.A., Henter, J.I., Bennett, M., Fischer, A., de Saint Basile, G. and Kumar, V. (1999) Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286, 1957–1959.CrossRefPubMedGoogle Scholar
  25. Street, S.E., Hayakawa, Y., Zhan, Y., Lew, A.M., MacGregor, D., Jamieson, A.M., Diefenbach, A., Yagita, H., Godfrey, D.I. and Smyth, M.J. (2004) Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells. J. Exp. Med. 199, 879–884.CrossRefPubMedGoogle Scholar
  26. Trambas, C., Gallo, F., Pende, D., Marcenaro, S., Moretta, L., De Fusco, C., Santoro, A., Notarangelo, L., Arico, M. and Griffiths, G.M. (2005) A single amino acid change, A91V, leads to conformational changes that can impair processing to the active form of perforin. Blood 106, 932–937.CrossRefPubMedGoogle Scholar
  27. Trapani, J.A. and Smyth, M.J. (2002) Functional significance of the perforin/granzyme cell death pathway. Nat. Rev. Immunol. 2, 735–747.CrossRefPubMedGoogle Scholar
  28. Trapani, J.A. and Sutton, V.R. (2003) Granzyme B: pro-apoptotic, antiviral and antitumor functions. Curr. Opin. Immunol. 15, 533–543.CrossRefPubMedGoogle Scholar
  29. Uellner, R., Zvelebil, M.J., Hopkins, J., Jones, J., MacDougall, L.K., Morgan, B.P., Podack, E., Waterfield, M.D. and Griffiths, G.M. (1997) Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain. EMBO J. 16, 7287–7296.CrossRefPubMedGoogle Scholar
  30. Voskoboinik, I., Thia, M.-C., De Bono, A., Browne, K., Cretney, E., Jackson, J.T., Darcy, P. K., Jane, S.M., Smyth, M.J. and Trapani, J.A. (2004) The functional basis for hemophagocytic lymphohistiocytosis in a patient with co-inherited missense mutations in the perforin (PFN1) gene. J. Exp. Med. 200, 811–816.CrossRefPubMedGoogle Scholar
  31. Voskoboinik, I., Thia, M.C., Fletcher, J., Ciccone, A., Browne, K., Smyth, M.J. and Trapani, J.A. (2005a) Calcium-dependent plasma membrane binding and cell lysis by perforin are mediated through its C2 domain: A critical role for aspartate residues 429, 435, 483, and 485 but not 491. J. Biol. Chem. 280, 8426–8234.CrossRefPubMedGoogle Scholar
  32. Voskoboinik, I., Thia, M.C. and Trapani, J.A. (2005b) A functional analysis of the putative polymorphisms A91V and N252S and 22 missense perforin mutations associated with familial hemophagocytic lymphohistiocytosis. Blood 105, 4700–4706.CrossRefPubMedGoogle Scholar
  33. Voskoboinik, I. and Trapani, J.A. (2006) Addressing the mysteries of perforin function. Immunol. Cell. Biol. 84, 66–71.CrossRefPubMedGoogle Scholar
  34. Waterhouse, N., Sedelies, K., Browne, K., Wowk, M., Newbold, A., Sutton, V., Clarke, C.J., Oliaro, J., Lindemann, R.K., Bird, P., Johnstone, R.W. and Trapani, J.A. (2005) A central role for Bid in granzyme B-induced apoptosis. J. Biol. Chem. 280, 4476–4482.CrossRefPubMedGoogle Scholar
  35. Zur Stadt, U., Beutel, K., Weber, B., Kabisch, H., Schneppenheim, R., Janka, G., Busiello, R., Galgani, M., De Fusco, C., Poggi, V., Adriani, M., Racioppi, L. and Pignata, C. (2004) A91V is a polymorphism in the perforin gene not causative of an FHLH phenotype. Blood 104, 1909–1910.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Peter MacCallum Cancer CentreEast MelbourneAustralia

Personalised recommendations