Functional Changes of Macrophages Induced by Dimeric Glycosaminylmuramyl Pentapeptide

  • Anna Ilinskaya
  • Natalia Oliferuk
  • Valerii Livov
  • Rakhim M. Khaitov
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 601)


Under the influence of dimeric glucosaminylmuramyl pentapeptide (diGMPP), a component of bacterial cell wall, macrophages undergo certain changes similar to those associated with dendritic cell (DC) maturation. The effect of diGMPP on DCs resulted in maturation and expression of CD83. Macrophages treated with diGMPP displayed reduced phagocytic activity and elevated ability to kill ingested bacteria. Reduced phagocytosis may be due to phenotypic changes that occur in macrophages during the maturation process, such as reduced expression of receptors that mediate ingesting of microorganisms (CD16, CD64, and CD11b). Down-regulated expression of pattern-recognizing receptors (TLR2, TLR4, and CD206) was accompanied by elevated expression of antigen-presenting (HLA-DR) and costimulating molecules (CD86 and CD40), similar to alterations observed in maturating DCs. In addition, diGMPP treatment of macrophages resulted in enhanced synthesis of IL-12, TNF-α , and IL-1β.


Dendritic Cell Phagocytic Activity Dendritic Cell Maturation Mycobacterium Bovis Diaminopimelic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bach, E.A., Aguet, M. and Schreiber, R.D. (1997) The IFN-γ receptor: a paradigm for cytokine receptor signaling. Annu. Rev. Immunol. 15, 563–591.CrossRefPubMedGoogle Scholar
  2. Bastos, K., Marinho, G., Barboza, R., Russo, M., Alvarez, J. and Lima, M. (2004) What kind of message does IL12/IL-23 bring to macrophages and dendritic cells? Microbes Infect. 6, 630–636.CrossRefPubMedGoogle Scholar
  3. Ellouz, F, Adam, A, Ciorbaru, R and Lederer, E. (1974) Minimal structure requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem. Biophys. Res. Commun. 59, 1317–1325.CrossRefPubMedGoogle Scholar
  4. Girardin, S.E., Travassos, L.H., Herve, M., Blanot, D., Boneca, I.G., Philpott, D.J., Sansonetti, P.J. and Mengin-Lecreulx, D. (2003) Peptidoglycan molecular requirements allowing detection by NOD1 and NOD2. J. Biol. Chem. 278, 41702–41708.CrossRefPubMedGoogle Scholar
  5. Gordon, S. (2003) Alternative activation of macrophages. Nat. Rev. 3, 23–35.CrossRefGoogle Scholar
  6. Hamerman, J.A. and Aderem, A. (2001) Functional transitions in macrophages during in vivo infection with Mycobacterium bovis bacillus Calmette-Guerin. J. Immunol. 167, 2227–2233.PubMedGoogle Scholar
  7. Hehlgans, T. and Pfeffer, K. (2005) The intriguing biology of tumor necrosis factor/tumor necrosis factor receptor superfamily: players, rules and the games. Immunology. 115, 1–20.CrossRefPubMedGoogle Scholar
  8. Henderson, R.A., Watkins, S.C. and Flynn, J.L. (1997) Activation of dendritic cells following infection with Mycobacterium tuberculosis. J. Immunology 159, 635–643.Google Scholar
  9. Inohara, N. and Nunez, G. (2003) NOD: intracellular protein involved in inflammation and apoptosis. Nat. Rev. 3, 371–382.CrossRefGoogle Scholar
  10. Johannsen, L. (1993) Biological properties of bacterial peptidoglycan. APMIS 101, 337–33CrossRefPubMedGoogle Scholar
  11. Jonuleit, H., Kuhn, U., Muller, G., Steinbrink, G., Paragnik, L., Schmitt, E., Knop, L. and Enk, A.H. (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur. J. Immunol. 27, 3135–3142.CrossRefPubMedGoogle Scholar
  12. Kool, J, De Visser, H. and Gerrits-Boeye, M.Y. (1994) Detection of intestinal flora-derived bacterial antigen combinedes in splenic macrophages of rats. J. Histochem. Cytochem. 42, 1435–1441.PubMedGoogle Scholar
  13. Lechmann, M., Berchtold, S., Hauber, J. and Steinkasserer, A. (2002) CD83 on dendritic cells: more than just a marker for maturation. Trends Immunol. 23, 273–275.CrossRefPubMedGoogle Scholar
  14. Ma, J., Chen, T., Mandelin, J., Ceponis, A., Miller, N.E., Hukkanen, M., Ma, G.F. and Kottinen, Y.H. (2003) Regulation of macrophage activation. Cell Mol. Life sci. 60, 2334–2346.CrossRefPubMedGoogle Scholar
  15. Majcherczyk, P.A., Langen, H., Heumann, D., Fountoulakis M., Glauser M.P. and Moreillon P. (1999) Digestion of Streptococcus pneumoniae cell wall with its major peptidoglycan hydrolase releases branched stem peptides carrying proinflammatory activity. J. Biol. Chem. 274, 12537–12543.CrossRefPubMedGoogle Scholar
  16. Mazurov, D. and Pinegin, B. (1999) Flow cytometry application for assessment of engulf and bactericidial function of peripheral blood granulocytes and monocytes. Immunology (Rus) 9, 154–156.Google Scholar
  17. Moreillon, P. and Majcherczyk, P.A. (2003) Proinflammatory activity of cell wall constituents from gram-positive bacteria. Scand. J. Infect. Dis. 35, 632–641.CrossRefPubMedGoogle Scholar
  18. Nelms, K., Keegan, A.D., Zamorano, J., Ryan, J.J. and Paul, W.E. (1999) The IL-4 receptor: signaling mechanisms and biological functions. Annu. Rev. Immunol. 17, 701–738.CrossRefPubMedGoogle Scholar
  19. Reise Sousa, C., Sher, C. and Kaye, P. (1999) The role of dendritic cells in the induction and regulation of immunity to microbial infection. Curr. Opin. Immunol. 11, 392–399.CrossRefGoogle Scholar
  20. Rescigno, M., Granucci, F., Citterio, S., Foti, M. and Ricciardi-Castagnoli, P. (1999) Coordinated events during bacteria-induced DC maturation. Immunol. Today 20, 200–203.CrossRefPubMedGoogle Scholar
  21. Thery, C. and Amigorena, S. (2001) The cell biology of antigen presentation in dendritic cells. Curr. Opin. Immunol. 13, 45–51.CrossRefPubMedGoogle Scholar
  22. Thurnher, M., Ramoner, R., Gastl, G., Radmayr, C., Bock, G., Herald, M., Klocker, H. and Bartsch, G. (1997) Bacillus Calmette-Guerin mycobacteria stimulate human blood dendritic cells. Int. J. Cancer. 70, 128–134.CrossRefPubMedGoogle Scholar
  23. Trinchieri, G. (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. 3, 133–146.CrossRefGoogle Scholar
  24. Wehner, N.G. and Gray, G.R. (1991) In vitro stimulation of immune functions by lipids derived from macrophages exposed to bacterial peptidoglycan. J. Immunol. 147, 3595–3600.PubMedGoogle Scholar
  25. Zhou, L.J. and Tedder, T.F. (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc. Natl. Acad. Sci. U.S.A. 93, 2588–2592.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Anna Ilinskaya
    • 1
  • Natalia Oliferuk
    • 1
  • Valerii Livov
    • 1
  • Rakhim M. Khaitov
    • 1
  1. 1.National Research Center Institute of ImmunologyRussian Federal Medical Biological AgencyMoscowRussia

Personalised recommendations