Alarmins Initiate Host Defense

  • Joost J. Oppenheim
  • Poonam Tewary
  • Gonzalo de la Rosa
  • De Yang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 601)


In response to infection and/or tissue injury, cells of the host innate immune system rapidly produce a variety of structurally distinct mediators (we elect to call alarmins) that not only function as potent effectors of innate defense but also act to alarm the immune system by promoting the recruitment and activation of host leukocytes through interaction with distinct receptors. Alarmins are capable of activating antigen-presenting cells (APCs) and enhancing the development of antigen-specific immune responses. Here, we discuss the characteristics of several alarmins, a variety of potential alarmin candidates and potential implications of alarmins.


Antimicrobial Peptide Chemotactic Activity Beta Defensin Human Neutrophil Peptide Host Innate Immune System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bals, R. and Wilson, J.M. (2003) Cathelicidins-a family of multifunctional antimicrobial peptides. Cell Mol. Life Sci. 60, 711–720.CrossRefPubMedGoogle Scholar
  2. Bianchi, M.E. (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5.CrossRefPubMedGoogle Scholar
  3. Biragyn, A., Ruffini, P.A., Coscia, M., Harvey, L.K., Neelapu, S.S., Baskar, S., Wang, J.M. and Kwak, L.W. (2004) Chemokine receptor-mediated delivery directs self-tumor antigen efficiently into the class II processing pathway in vitro and induces protective immunity in vivo. Blood 104, 1961–1969.CrossRefPubMedGoogle Scholar
  4. Biragyn, A., Ruffini, P.A., Leifer, C.A., Klyushnenkova, E., Shakhov, A., Chertov, O., Shirakawa, A.K., Farber, J.M., Segal, D.M., Oppenheim, J.J. and Kwak, L.W. (2002) Toll-like receptor 4-dependent activation of dendritic cells by β -defensin 2. Science 298, 1025–1029.CrossRefPubMedGoogle Scholar
  5. Biragyn, A., Surenhu, M., Yang, D., Ruffini, P.A., Haines, B.A., Klyushnenkova, E., Oppenheim, J.J. and Kwak, L.W. (2001) Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J. Immunol. 167, 6644–6653.PubMedGoogle Scholar
  6. Buck, C.B., Day, P.M., Thompson, C.D., Lubkowski, J., Lu, W., Lowy, D.R. and Schiller, J.T. (2006) Human alpha-defensins block papillomavirus infection. Proc. Natl. Acad. Sci. U.S.A. 103, 1516–21.CrossRefPubMedGoogle Scholar
  7. Chertov, O., Michiel, D.F., Xu, L., Wang, J.M., Tani, K., Murphy, W.J., Longo, D.L., Taub, D.D. and Oppenheim, J.J. (1996) Identification of defensin-1, defensin-2, and CAP37/azurocidin as T cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. 271, 2935–2940.CrossRefPubMedGoogle Scholar
  8. Deng, A., Chen, S., Li, Q., Lyu, S.C., Clayberger, C. and Krensky, A.M. (2005) Granulysin, a cytolytic molecule, is also a chemoattractant and proinflammatory activator. J. Immunol. 174, 5243–8.PubMedGoogle Scholar
  9. Garcia, J.R., Jaumann, F., Schulz, S., Krause, A., Rodriguez-Jimenez, J., Forssmann, U., Adermann, K., E, E.K., Vogelmeier, C., Becker, D., Hedrich, R., Forssmann, W.G. and Bals, R. (2001a) Identification of a novel, multifunctional β -defensin (human β -defensin 3) with specific antimicrobial activity: its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res. 306, 257–264.CrossRefPubMedGoogle Scholar
  10. Garcia, J.R., Krause, A., Schulz, S., Rodriguez-Jimenez, F.J., Kluver, E., Adermann, K., Forssmann, U., Frimpong-Boateng, A., Bals, R. and Forssmann, W.G. (2001b) Human β -defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J. 15, 1819–1821.PubMedGoogle Scholar
  11. Hori, O., Brett, J., Slattery, T., Cao, R., Zhang, J., Chen, J.X., Nagashima, M., Lundh, E.R., Vijay, S., Nitecki, D. Morser, J., Stern, D. and Schmidt, A.M. (1995) The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J. Biol. Chem. 270, 25752–25761.CrossRefPubMedGoogle Scholar
  12. Idzko, M., Dichmann, S., Ferrari, D., Di Virgilio, F., la Sala, A., Girolomoni, G., Panther, E. and Norgauer, J. (2002) Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2y receptors. Blood 100, 925–32.CrossRefPubMedGoogle Scholar
  13. Klotman, M.E. and Chang, T.L. (2006) Defensins in innate antiviral immunity. Nat. Rev. Immunol. 6, 447–456.CrossRefPubMedGoogle Scholar
  14. Kokkola, R., Andersson, A., Mullins, G., Ostberg, T., Treutiger, C.J., Arnold, B., Nawroth, P., Andersson, U., Harris, R.A. and Harris, H.E. (2005) RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand. J. Immunol. 61, 1–9.CrossRefPubMedGoogle Scholar
  15. Kornbluth, R.S. and Stone, G.W. (2006) Immunostimulatory combinations: designing the next generation of vaccine adjuvants. J. Leukoc. Biol. 80, 1084–102.CrossRefPubMedGoogle Scholar
  16. Kurosaka, K., Chen, Q., Yarovinsky, F., Oppenheim, J.J. and Yang, D. (2005) Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. J. Immunol. 174, 6257–6265.PubMedGoogle Scholar
  17. Lillard Jr., J.W., Boyaka, P.N., Chertov, O., Oppenheim, J.J. and McGhee, J.R. (1999) Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc. Natl. Acad. Sci. U.S.A. 96, 651–656.CrossRefPubMedGoogle Scholar
  18. Ma, X.T., Xu, B., An, L.L., Dong, C.Y., Lin, Y.M., Shi, Y. and Wu, K.F. (2006) Vaccine with beta-defensin 2-transduced leukemic cells activates innate and adaptive immunity to elicit potent antileukemia responses. Cancer Res. 66, 1169–1176.CrossRefPubMedGoogle Scholar
  19. Manjili, M.H., Wang, X.Y., MacDonald, I.J., Arnouk, H., Yang, G.Y., Pritchard, M.T. and Subjeck, J.R. (2004) Cancer immunotherapy and heat-shock proteins: promises and challenges. Expert Opin. Biol. Ther. 4, 363–373.CrossRefPubMedGoogle Scholar
  20. Marsland, B.J., Battig, P., Bauer, M., Ruedl, C., Lassing, U., Beerli, R.R., Dietmeier, K., Ivanova, L., Pfister, T., Vogt, L., Nakano, H., Nembrini, C., Saudan, P., Kopf, M. and Bachmann, M.F. (2005) CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. Immunity 22, 493–505.CrossRefPubMedGoogle Scholar
  21. Molon, B., Gri, G., Bettella, M., Gomez-Mouton, C., Lanzavecchia, A., Martinez, A.C., Manes, S. and Viola, A. (2005) T cell costimulation by chemokine receptors. Nat. Immunol. 6, 465–471.CrossRefPubMedGoogle Scholar
  22. Moser, C., Weiner, D.J., Lysenko, E., Bals, R., Weiser, J.N. and Wilson, J.M. (2002) β -Defensin 1 contributes to pulmonary innate immunity in mice. Infect. Immun. 70, 3068–3072.CrossRefPubMedGoogle Scholar
  23. Nizet, V., Ohtake, T., Lauth, X., Trowbridge, J., Rudisill, J., Dorschner, R.A., Pestonjamasp, V., Piraino, J., Huttner, K. and Gallo, R.L. (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414, 454–457.CrossRefPubMedGoogle Scholar
  24. Oppenheim, J.J. and Yang, D. (2005) Alarmins: chemotactic activators of immune responses. Curr. Opin. Immunol. 17, 359–365.CrossRefPubMedGoogle Scholar
  25. Park, J.S., Gamboni-Robertson, F., He, Q., Svetkauskaite, D., Kim, J.Y., Strassheim, D., Sohn, J.W., Yamada, S., Maruyama, I., Banerjee, A., Ishizaka, A. and Abraham, E. (2006) High mobility group box 1 protein interacts with multiple Toll-like receptors. Am. J. Physiol. Cell. Physiol. 290, C917–C924.Google Scholar
  26. Rosenberger, C.M., Gallo, R.L. and Finlay, B.B. (2004) Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc. Natl. Acad. Sci. U.S.A. 101, 2422–2427.CrossRefPubMedGoogle Scholar
  27. Rouhiainen, A., Kuja-Panula, J., Wilkman, E., Pakkanen, J., Stenfors, J., Tuominen, R.K., Lepantalo, M., Carpen, O., Parkkinen, J. and Rauvala, H. (2004) Regulation of monocyte migration by amphoterin (HMGB1). Blood 104, 1174–1182.CrossRefPubMedGoogle Scholar
  28. Rovere-Querini, P., Capobianco, A., Scaffidi, P., Valentinis, B., Catalanotti, F., Giazzon, M., Dumitriu, I.E., Muller, S., Iannacone, M., Traversari, C., Bianchi, M.E. and Manfredi, A.A. (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep. 5, 825–830.CrossRefPubMedGoogle Scholar
  29. Rugeles, M.T., Trubey, C.M., Bedoya, V.I., Pinto, L.A., Oppenheim, J.J., Rybak, S.M. and Shearer, G.M. (2003) Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition. AIDS 17, 481–486.CrossRefPubMedGoogle Scholar
  30. Shi, Y., Evans, J.E. and Rock, K.L. (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521.CrossRefPubMedGoogle Scholar
  31. Uesugi, H., Ozaki, S., Sobajima, J., Osakada, F., Shirakawa, H., Yoshida, M. and Nakao, K. (1998) Prevalence and characterization of novel pANCA, antibodies to the high mobility group non-histone chromosomal proteins HMG1 and HMG2, in systemic rheumatic diseases. J. Rheumatol. 25, 703–709.PubMedGoogle Scholar
  32. Wang, H., Bloom, O., Zhang, M., Vishnubhakat, J.M., Ombrellino, M., Che, J., Frazier, A., Yang, H., Ivanova, S., Borovikova, L., Manogue, K.R., Faist, E., Abraham, E., Andersson, J., Andersson, U., Molina, P.E., Abumrad, N.N., Sama, A. and Tracey, K.J. (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285, 248–251.CrossRefPubMedGoogle Scholar
  33. Wehkamp, J. and Stange, E.F. (2006) A new look at Crohn’s disease: breakdown of the mucosal antibacterial defense. Ann. N. Y. Acad. Sci. 1072, 321–331.CrossRefPubMedGoogle Scholar
  34. Wu, Z., Hoover, D.M., Yang, D., Boulegue, C., Santamaria, F., Oppenheim, J.J., Lubkowski, J. and Lu, W. (2003) Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human β -defensin 3. Proc. Natl. Acad. Sci. U.S.A. 100, 8880–8885.CrossRefPubMedGoogle Scholar
  35. Yang, D., Biragyn, A., Hoover, D.M., Lubkowski, J. and Oppenheim, J.J. (2004a) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol. 22, 181–315.CrossRefPubMedGoogle Scholar
  36. Yang, D., Chen, Q., Rosenberg, H.F., Rybak, S.M., Newton, D.L., Wang, Z.Y., Fu, Q., Tchernev, V.T., Wang, M., Schweitzer, B., Kingsmore, S.F., Patel, D.D., Oppenheim, J.J. and Howard, O.M. (2004b) Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J. Immunol. 173, 6134–6142.PubMedGoogle Scholar
  37. Yang, D., Chen, Q., Chertov, O. and Oppenheim, J.J. (2000) Human neutrophil defensins selectively chemoattract naïve T and immature dendritic cells. J. Leukoc. Biol. 68, 9–14.PubMedGoogle Scholar
  38. Yang, D., Chen, Q., Schmidt, A.P., Anderson, G.M., Wang, J.M., Wooters, J., Oppenheim, J.J. and Chertov, O. (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192, 1069–1074.CrossRefPubMedGoogle Scholar
  39. Yang, D., Chen, Q., Su, S.B., Zhang, P., Kurosaka, K., Caspi, R.R., Michalek, S.M., Rosenberg, H.F. and Oppenheim, J.J. (submitted) Eosinophil-derived neurotoxin acts as an alarmin to enhance Th2 immune responses by activating TLR2-MyD88 signal pathway in dendritic cells. (submitted).Google Scholar
  40. Yang, D., Chen, Q., Yang, H., Tracey, K.J., Bustin, M. and Oppenheim, J.J. (2007b) High mobility group box-1 (HMGB1) protein induces the migration and activation of human dendritic cells and acts as an alarmin. J. Leukoc. Biol. 81, 59–66.CrossRefPubMedGoogle Scholar
  41. Yang, D., Rosenberg, H.F., Chen, Q., Dyer, K.D., Kurosaka, K. and Oppenheim, J.J. (2003) Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood 102, 3396–3403.CrossRefPubMedGoogle Scholar
  42. Zedler, S. and Faist, E. (2006) The impact of endogenous triggers on trauma-associated inflammation. Curr. Opin. Crit. Care 12, 595–601.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Joost J. Oppenheim
    • 1
  • Poonam Tewary
    • 1
  • Gonzalo de la Rosa
    • 1
  • De Yang
    • 2
  1. 1.Laboratory of Molecular ImmunoregulationCenter for Cancer Research, NCIFredericUSA
  2. 2.Basic Research ProgramSAIC-Frederick, Inc.FredericUSA

Personalised recommendations