Intrathymic Selection: New Insight into Tumor Immunology

  • Dmitry B. Kazansky
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 601)


Central tolerance to self-antigens is formed in the thymus where deletion of clones with high affinity to “self” takes place. Expression of peripheral antigens in the thymus has been implicated in T cell tolerance and autoimmunity. During the last years, it has been shown that medullary thymic epithelial cells (mTECs) are the unique cell type expressing a diverse range of tissue-specific antigens. Promiscuous gene expression is a cell autonomous property of thymic epithelial cells and is maintained during the entire period of thymic T cell output. The array of promiscuously expressed self-antigens was random and included well-known targets for cancer immunotherapy, such as α -fetoprotein, P1A, tyrosinase, and gp100. Gene expression in normal tissues may result in tolerance of high-avidity cytotoxic T lymphocyte (CTL), leaving behind low-avidity CTL that cannot provide effective immunity against tumors expressing the relevant target antigens. Thus, it may be evident that tumor vaccines that targeted the tumor-associated antigens should be inefficient due to the loss of high-avidity T cell clones capable to be stimulated. Stauss with colleagues have described a strategy to circumvent immunological tolerance that can be used to generate high-avidity CTL against self-proteins, including human tumor-associated antigens. In this strategy, the allorestricted repertoire of T cells from allogenic donor is used as a source of T cell clones with high avidity to tumor antigens of recipient for adoptive immunotherapy. Then, the T cell receptor (TCR) genes isolated from antigen-specific T cells can be exploited as generic therapeutic molecules for antigen-specific immunotherapy.


Major Histocompatibility Complex Class Central Tolerance Tumor Immunology Medullary Thymic Epithelial Cell Promiscuous Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amrolia, P.J., Reid, S.D., Gao, L., Schultheis, B., Dotti, G., Brenner, M.K., Melo, J.V., Goldman, J.M. and Stauss, H.J. (2003) Allorestricted cytotoxic T cells specific for human CD45 show potent antileukemic activity. Blood 101, 1007–1014.CrossRefPubMedGoogle Scholar
  2. Anderson, M.S., Venanzi, E.S., Chen, Z., Berzins, S.P., Benoist, C. and Mathis, D. (2005) The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227–239.CrossRefPubMedGoogle Scholar
  3. Brandle, D., Brasseur, F., Weynants, P., Boon, T. and Van den Eynde, B. (1996) A mutated HLA-A2 molecule recognized by autologous cytotoxic T lymphocytes on a human renal cell carcinoma. J. Exp. Med. 183, 2501–2508.CrossRefPubMedGoogle Scholar
  4. Cerundolo, V., Elliott, T., Elvin, J., Bastin, J., Rammensee, H.G. and Townsend, A. (1991) The binding affinity and dissociation rates of peptides for class I major histocompatibility complex molecules. Eur. J. Immunol. 21, 2069–2075.CrossRefPubMedGoogle Scholar
  5. Cohen, C.J., Zhao, Y., Zheng, Z., Rosenberg, S.A. and Morgan, R.A. (2006) Enhanced antitumor activity of murine-human hybrid T cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. 66, 8878–8886.CrossRefPubMedGoogle Scholar
  6. Coulie, P.G., Lehmann, F., Lethe, B., Herman, J., Lurquin, C., Andrawiss, M. and Boon, T. (1995) A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc. Natl. Acad. Sci. U.S.A. 92, 7976–7980.CrossRefPubMedGoogle Scholar
  7. Dubey, P., Hendrickson, R.C., Meredith, S.C., Siegel, C.T., Shabanowitz, J., Skipper, J.C., Engelhard, V.H., Hunt, D.F. and Schreiber, H. (1997) The immunodominant antigen of an ultraviolet-induced regressor tumor is generated by a somatic point mutation in the DEAD box helicase p68. J. Exp. Med. 185, 695–705.CrossRefPubMedGoogle Scholar
  8. Egger, G., Liang, G., Aparicio, A. and Jones, P.A. (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463.CrossRefPubMedGoogle Scholar
  9. Falk, K., Rotzschke, O. Stevanovic, S., Jung, G. and Rammensee, H.G. (1991a) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296.CrossRefPubMedGoogle Scholar
  10. Falk, K., Rotzschke, O., Deres, K., Metzger, J., Jung, G. and Rammensee, H.G. (1991b) Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allele-specific T cell epitope forecast. J. Exp. Med. 174, 425–434.CrossRefPubMedGoogle Scholar
  11. Falk, K., Rotzschke, O. and Rammensee, H.G. (1990) Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 348, 248–251.CrossRefPubMedGoogle Scholar
  12. Felsher, D.W. (2003) Cancer revoked: oncogenes as therapeutic targets. Nat. Rev. Cancer 3, 375–380.CrossRefPubMedGoogle Scholar
  13. Gao, L., Bellantuono, I., Elsasser, A., Marley, S.B., Gordon, M.Y., Goldman, J.M. and Stauss, H.J. (2000) Selective elimination of leukemic CD34+progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 95, 2198–2203.PubMedGoogle Scholar
  14. Golovkina, T.V., Chervonsky, A., Dudley, J.P. and Ross, S.R. (1992) Transgenic mouse mammary tumor virus superantigen expression prevents viral infection. Cell 69, 637–645.CrossRefPubMedGoogle Scholar
  15. Hahn, W.C. and Weinberg, R.A. (2002) Rules for making human tumor cells. N. Engl. J. Med. 347, 1593–1603.CrossRefPubMedGoogle Scholar
  16. Kalbus, M., Fleckenstein, B.T., Offenhausser, M., Bluggel, M., Melms, A., Meyer, H.E., Rammensee, H.G., Martin, R., Jung, G. and Sommer, N. (2001) Ligand motif of the autoimmune disease-associated mouse MHC class II molecule H2-As. Eur. J. Immunol. 31, 551–562.CrossRefPubMedGoogle Scholar
  17. Li, E. (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3, 662–673.CrossRefPubMedGoogle Scholar
  18. Logunova, N.N., Viret, C., Pobezinsky, L.A., Miller, S.A., Kazansky, D.B., Sundberg, J.P. and Chervonsky, A.V. (2005) Restricted MHC-peptide repertoire predisposes to autoimmunity. J. Exp. Med. 202, 73–84.CrossRefPubMedGoogle Scholar
  19. Monach, P.A., Meredith, S.C., Siegel, C.T. and Schreiber, H. (1995) A unique tumor antigen produced by a single amino acid substitution. Immunity 2, 45–59.CrossRefPubMedGoogle Scholar
  20. Morris, E.C., Tsallios, A., Bendle, G.M., Xue, S.A. and Stauss, H.J. (2005) A critical role of T cell antigen receptor-transduced MHC class I-restricted helper T cells in tumor protection. Proc. Natl. Acad. Sci. U.S.A. 102, 7934–7939.CrossRefPubMedGoogle Scholar
  21. Munz, C., Hofmann, M., Yoshida, K., Moustakas, A.K., Kikutani, H., Stevanovic, S., Papadopoulos, G.K. and Rammensee, H.G. (2002) Peptide analysis, stability studies, and structural modeling explain contradictory peptide motifs and unique properties of the NOD mouse MHC class II molecule H2-Ag7. Eur. J. Immunol. 32, 2105–2116.CrossRefPubMedGoogle Scholar
  22. Pelleitier, M. and Montplaisir, S. (1975) The nude mouse: a model of deficient T cell function. Methods Achiev. Exp. Pathol. 7, 149–166.PubMedGoogle Scholar
  23. Pobezinskaya, Y., Chervonsky, A.V. and Golovkina, T.V. (2004) Initial stages of mammary tumor virus infection are superantigen independent. J. Immunol. 172, 5582–5587.PubMedGoogle Scholar
  24. Prehn, R.T. (2005) On the nature of cancer and why anticancer vaccines don’t work. Cancer Cell Int. 5, 25.CrossRefPubMedGoogle Scholar
  25. Prehn, R.T. and Main, J.M. (1957) Immunity to methylcholanthrene-induced sarcomas. J. Natl. Cancer Inst. 18, 769–778.PubMedGoogle Scholar
  26. Rammensee, H.G. (1995) Chemistry of peptides associated with MHC class I and class II molecules. Curr. Opin. Immunol. 7, 85–96.CrossRefPubMedGoogle Scholar
  27. Rammensee, H.G., Falk, K. and Rotzschke, O. (1993) Peptides naturally presented by MHC class I molecules. Annu. Rev. Immunol. 11, 213–244.CrossRefPubMedGoogle Scholar
  28. Reche, P.A., Glutting, J.P., Zhang, H. and Reinherz, E.L. (2004) Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 56, 405–419.CrossRefPubMedGoogle Scholar
  29. Robbins, P.F., El-Gamil, M., Li, Y.F., Kawakami, Y., Loftus, D., Appella, E. and Rosenberg, S.A. (1996) A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J. Exp. Med. 183, 1185–1192.CrossRefPubMedGoogle Scholar
  30. Rosenberg, S.A., Sherry, R.M., Morton, K.E., Scharfman, W.J., Yang, J.C., Topalian, S.L., Royal, R.E., Kammula, U., Restifo, N.P., Hughes, M.S., Schwartzentruber, D., Berman, D.M., Schwarz, S.L., Ngo, L.T., Mavroukakis, S.A., White, D.E. and Steinberg, S.M. (2005) Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J. Immunol. 175, 6169–6176.PubMedGoogle Scholar
  31. Rotzschke, O., Falk, K., Deres, K., Schild, H., Norda, M., Metzger, J., Jung, G. and Rammensee, H.G. (1990) Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 348, 252–254.CrossRefPubMedGoogle Scholar
  32. Rotzschke, O., Falk, K., Stevanovic, S., Jung, G., Walden, P. and Rammensee, H.G. (1991) Exact prediction of a natural T cell epitope. Eur. J. Immunol. 21, 2891–2894.CrossRefPubMedGoogle Scholar
  33. Sadovnikova, E., Jopling, L.A., Soo, K.S. and Stauss, H.J. (1998) Generation of human tumor-reactive cytotoxic T cells against peptides presented by non-self HLA class I molecules. Eur. J. Immunol. 28, 193–200.CrossRefPubMedGoogle Scholar
  34. Sadovnikova, E. and Stauss, H.J. (1996) Peptide-specific cytotoxic T lymphocytes restricted by nonself major histocompatibility complex class I molecules: reagents for tumor immunotherapy. Proc. Natl. Acad. Sci. U.S.A. 93, 13114–13118.CrossRefPubMedGoogle Scholar
  35. Sadovnikova, E., Parovichnikova, E.N., Savchenko, V.G., Zabotina, T. and Stauss, H.J. (2002) The CD68 protein as a potential target for leukaemia-reactive CTL. Leukemia 16, 2019–2026.CrossRefPubMedGoogle Scholar
  36. Sharkey, F.E. and Fogh, J. (1979) Incidence and pathological features of spontaneous tumors in athymic nude mice. Cancer Res. 39, 833–839.PubMedGoogle Scholar
  37. Sherman, L.A., Theobald, M., Morgan, D., Hernandez, J., Bacik, I., Yewdell, J., Bennink, J. and Biggs, J. (1998) Strategies for tumor elimination by cytotoxic T lymphocytes. Crit. Rev. Immunol. 18, 47–54.PubMedGoogle Scholar
  38. Simpson, A.J., Caballero, O.L., Jungbluth, A., Chen, Y.T. and Old, L.J. (2005) Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 5, 615–625.CrossRefPubMedGoogle Scholar
  39. Sommermeyer, D., Neudorfer, J., Weinhold, M., Leisegang, M., Engels, B., Noessner, E., Heemskerk, M.H., Charo, J., Schendel, D.J., Blankenstein, T., Bernhard, H. and Uckert, W. (2006) Designer T cells by T cell receptor replacement. Eur. J. Immunol. 36, 3052–3059.CrossRefPubMedGoogle Scholar
  40. Su, M.A. and Anderson, M.S. (2004) Aire: an update. Curr. Opin. Immunol. 16, 746–752.CrossRefPubMedGoogle Scholar
  41. Svane, I.M., Boesen, M. and Engel, A.M. (1999) The role of cytotoxic T lymphocytes in the prevention and immune surveillance of tumors - lessons from normal and immunodeficient mice. Med. Oncol. 16, 223–238.CrossRefPubMedGoogle Scholar
  42. Svane, I.M., Engel, A.M., Nielsen, M.B., Ljunggren, H.G., Rygaard, J. and Werdelin, O. (1996) Chemically induced sarcomas from nude mice are more immunogenic than similar sarcomas from congenic normal mice. Eur. J. Immunol. 26, 1844–1850.CrossRefPubMedGoogle Scholar
  43. Van Der Bruggen, P., Zhang, Y., Chaux, P., Stroobant, V., Panichelli, C., Schultz, E.S., Chapiro, J., Van Den Eynde, B.J., Brasseur, F. and Boon, T. (2002) Tumor-specific shared antigenic peptides recognized by human T cells. Immunol. Rev. 188, 51–64.CrossRefGoogle Scholar
  44. Vartdal, F., Johansen, B.H., Friede, T., Thorpe, C.J., Stevanovic, S., Eriksen, J.E., Sletten, K., Thorsby, E., Rammensee, H.G. and Sollid, L.M. (1996) The peptide binding motif of the disease associated HLA-DQ (alpha 1* 0501, beta 1* 0201) molecule. Eur. J. Immunol. 26, 2764–2772.CrossRefPubMedGoogle Scholar
  45. Wallny, H.J., Deres, K., Faath, S., Jung, G., Van Pel, A., Boon, T. and Rammensee, H.G. (1992b) Identification and quantification of a naturally presented peptide as recognized by cytotoxic T lymphocytes specific for an immunogenic tumor variant. Int. Immunol. 4, 1085–1090.CrossRefPubMedGoogle Scholar
  46. Wallny, H.J., Rotzschke, O., Falk, K., Hammerling, G. and Rammensee, H.G. (1992a) Gene transfer experiments imply instructive role of major histocompatibility complex class I molecules in cellular peptide processing. Eur. J. Immunol. 22, 655–659.CrossRefPubMedGoogle Scholar
  47. Ward, P.L., Koeppen, H.K., Hurteau, T., Rowley, D.A. and Schreiber, H. (1990) Major histocompatibility complex class I and unique antigen expression by murine tumors that escaped from CD8+T cell-dependent surveillance. Cancer Res. 50, 3851–3858.PubMedGoogle Scholar
  48. Willemsen, R.A., Debets, R., Chames, P. and Bolhuis, R.L. (2003) Genetic engineering of T cell specificity for immunotherapy of cancer. Hum. Immunol. 64, 56–68.CrossRefPubMedGoogle Scholar
  49. Wilson, D.B., Wilson, D.H., Schroder, K., Pinilla, C., Blondelle, S., Houghten, R.A. and Garcia, K.C. (2004) Specificity and degeneracy of T cells. Mol. Immunol. 40, 1047–1055.CrossRefPubMedGoogle Scholar
  50. Wolfel, T., Hauer, M., Schneider, J., Serrano, M., Wolfel, C., Klehmann-Hieb, E., De Plaen, E., Hankeln, T., Meyer zum Buschenfelde, K.H. and Beach, D. (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269, 1281–1284.CrossRefPubMedGoogle Scholar
  51. Woodruff, M.F. and Hodson, B.A. (1985) The effect of passage in vitro and in vivo on the properties of murine fibrosarcomas I. Tumorigenicity and immunogenicity. Br. J. Cancer 51, 161–169.PubMedGoogle Scholar
  52. Xu, X.N. and Screaton, G.R. (2002) MHC/peptide tetramer-based studies of T cell function. J. Immunol. Methods 268, 21–28.CrossRefPubMedGoogle Scholar
  53. Xue, S., Gillmore, R., Downs, A., Tsallios, A., Holler, A., Gao, L., Wong, V., Morris, E. and Stauss, H.J. (2005) Exploiting T cell receptor genes for cancer immunotherapy. Clin. Exp. Immunol. 139, 167–172.CrossRefPubMedGoogle Scholar
  54. Zerrahn, J., Held, W. and Raulet, D.H. (1997) The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88, 627–636.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of CarcinogenesisBlokhin Cancer Research CenterMoscowRussia

Personalised recommendations