Advertisement

Peptide-Based Therapy in Lupus: Promising Data

  • Fanny Monneaux
  • Sylviane Muller
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 601)

Abstract

Systemic lupus erythematosus (SLE) is a multisystem chronic inflammatory disease of multifactorial aetiology, characterized by inflammation and damage of various tissues and organs. Current treatments of the disease are mainly based on immunosuppressive drugs such as corticosteroids and cyclophosphamide. Although these treatments have reduced mortality and morbidity, they cause a non-specific immune suppression. To avoid these side effects, our efforts should focus on the development of alternative therapeutic strategies, which consist, for example in specific T cell targeting using autoantigen-derived peptides identified as sequences encompassing major epitopes.

Keywords

Systemic Lupus Erythematosus Lupus Nephritis Cell Epitope Lupus Patient P140 Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, S.D., Rawale, S.V., Whitacre, C.C. and Kaumaya, P.T. (2005) Therapeutic peptidomimetic strategies for autoimmune diseases: costimulation blockade. J. Pept. Res. 65, 591–604.CrossRefPubMedGoogle Scholar
  2. Amital, H., Heilweil, M., Ulmansky, R., Szafer, F., Bar-Tana, R., Morel, L., Foster, M.H., Mostoslavsky, G., Eilat, D., Pizov, G. and Naparstek, Y. (2005) Treatment with a laminin-derived peptide suppresses lupus nephritis. J. Immunol. 175, 5516–5523.PubMedGoogle Scholar
  3. Anderton, S.M. (2001) Peptide-based immunotherapy of autoimmunity: a path of puzzles, paradoxes and possibilities. Immunology 104, 367–376.CrossRefPubMedGoogle Scholar
  4. Benkirane, N., Guichard, G., Briand, J.P. and Muller, S. (1996) Exploration of requirements for peptidomimetic immune recognition. Antigenic and immunogenic properties of reduced peptide bond pseudopeptide analogues of a histone hexapeptide. J. Biol. Chem. 271, 33218–33224.CrossRefPubMedGoogle Scholar
  5. Ben-Yedidia, T., Beignon, A.S., Partidos, C.D., Muller, S. and Arnon, R. (2002) A retro-inverso peptide analogue of influenza virus hemagglutinin B-cell epitope 91-108 induces a strong mucosal and systemic immune response and confers protection in mice after intranasal immunization. Mol. Immunol. 39, 323–331.CrossRefPubMedGoogle Scholar
  6. Briand, J.P., Guichard, G., Dumortier, H. and Muller, S. (1995) Retro-inverso peptidomimetics as new immunological probes. Validation and application to the detection of antibodies in rheumatic diseases. J. Biol. Chem. 270, 20686–20691.CrossRefPubMedGoogle Scholar
  7. Dali, H., Busnel, O., Hoebeke, J., Bi, L., Decker, P., Briand, J.P., Baudy-Floc’h, M. and Muler, S. Heteroclitic properties of mixed-α -and aza-α 3-peptides mimicking a supradominant CD4 T cell epitope presented by nucleosome. Mol. Immunol. 44, 3024–3036.Google Scholar
  8. Decker, P., Le Moal, A., Briand, J.P. and Muller, S. (2000) Identification of a minimal T cell epitope recognized by antinucleosome Th cells in the C-terminal region of histone H4. J. Immunol. 165, 654–662.PubMedGoogle Scholar
  9. Fairchild, P.J. (1997) Altered peptide ligands: prospects for immune intervention in autoimmune disease. Eur. J. Immunogenet. 24, 155–167.CrossRefPubMedGoogle Scholar
  10. Guichard, G., Benkirane, N., Zeder-Lutz, G., van Regenmortel, M.H., Briand, J.P. and Muller, S. (1994) Antigenic mimicry of natural L-peptides with retro-inverso-peptidomimetics. Proc. Natl. Acad. Sci. U.S.A. 91, 9765–9769.CrossRefPubMedGoogle Scholar
  11. Hahn, B.H., Singh, R.P., La Cava, A. and Ebling, F.M. (2005) Tolerogenic treatment of lupus mice with consensus peptide induces Foxp3-expressing, apoptosis-resistant, TGFbeta-secreting CD8+ T cell suppressors. J. Immunol. 175, 7728–7737.PubMedGoogle Scholar
  12. Hahn, B.H., Singh, R.R., Wong, W.K., Tsao, B.P., Bulpitt, K. and Ebling, F.M. (2001) Treatment with a consensus peptide based on amino acid sequences in autoantibodies prevents T cell activation by autoantigens and delays disease onset in murine lupus. Arthritis Rheum. 44, 432–441.CrossRefPubMedGoogle Scholar
  13. Isenberg, D. and Rahman, A. (2006) Systemic lupus erythematosus–2005 annus mirabilis? Nat. Clin. Pract. Rheumatol. 2, 145–152.CrossRefGoogle Scholar
  14. Jameson, B.A., McDonnell, J.M., Marini, J.C. and Korngold, R. (1994) A rationally designed CD4 analogue inhibits experimental allergic encephalomyelitis. Nature 368, 744–746.CrossRefPubMedGoogle Scholar
  15. Kaliyaperumal, A., Michaels, M.A. and Datta, S.K. (1999) Antigen-specific therapy of murine lupus nephritis using nucleosomal peptides: tolerance spreading impairs pathogenic function of autoimmune T and B cells. J. Immunol. 162, 5775–5783.PubMedGoogle Scholar
  16. Kang, H.K., Michaels, M.A., Berner, B.R. and Datta, S.K. (2005) Very low-dose tolerance with nucleosomal peptides controls lupus and induces potent regulatory T cell subsets. J. Immunol. 174, 3247–3255.PubMedGoogle Scholar
  17. Kaul, A., D’Cruz, D. and Hughes, G.R.V. (2006) New therapies for systemic lupus erythematosus: has the future arrived? Future Rheumatol. 1, 235–247.CrossRefGoogle Scholar
  18. Kotzin, B.L. (1996) Systemic lupus erythematosus. Cell 85, 303–306.CrossRefPubMedGoogle Scholar
  19. Larché, M. and Wraith, D.C. (2005) Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nat. Med. 11, S69–S76.CrossRefPubMedGoogle Scholar
  20. Liu, E.H., Siegel, R.M., Harlan, D.M. and O’Shea, J.J. (2007) T cell-directed therapies: lessons learned and future prospects. Nat. Immunol. 8, 25–30.CrossRefPubMedGoogle Scholar
  21. Marino, M., Ruvo, M., De Falco, S. and Fassina, G. (2000) Prevention of systemic lupus erythematosus in MRL/lpr mice by administration of an immunoglobulin-binding peptide. Nat. Biotechnol. 18, 735–739.CrossRefPubMedGoogle Scholar
  22. Mattioli, M. and Reichlin, M. (1973) Physical association of two nuclear antigens and mutual occurrence of their antibodies: the relationship of the SM and RNAprotein (MO) systems in SLE sera. J. Immunol. 110, 1318–1324.PubMedGoogle Scholar
  23. Mézière, C., Viguier, M., Dumortier, H., Lo-Man, R., Leclerc, C., Guillet, J.G., Briand, J.P. and Muller, S. (1997) In vivo T helper cell response to retro-inverso peptidomimetics. J. Immunol. 159, 3230–3237.PubMedGoogle Scholar
  24. Monneaux, F., Briand, J.P. and Muller, S. (2000) B and T cell immune response to small nuclear ribonucleoprotein particles in lupus mice: autoreactive CD4(+) T cells recognize a T cell epitope located within the RNP80 motif of the 70 K protein. Eur. J. Immunol. 30, 2191–2200.CrossRefPubMedGoogle Scholar
  25. Monneaux, F., Dumortier, H., Steiner, G., Briand, J.P. and Muller, S. (2001) Murine models of systemic lupus erythematosus: B and T cell responses to spliceosomal ribonucleoproteins in MRL/Fas(lpr) and (NZB x NZW)F(1) lupus mice. Int. Immunol. 13, 1155–1163.CrossRefPubMedGoogle Scholar
  26. Monneaux, F., Hoebeke, J., Sordet, C., Nonn, C., Briand, J.P., Maillère, B., Sibillia, J. and Muller, S. (2005) Selective modulation of CD4+ T cells from lupus patients by a promiscuous, protective peptide analog. J. Immunol. 175, 5839–5847.PubMedGoogle Scholar
  27. Monneaux, F., Lozano, J.M., Patarroyo, M.E., Briand, J.P. and Muller, S. (2003) T cell recognition and therapeutic effect of a phosphorylated synthetic peptide of the 70 K snRNP protein administered in MR/lpr mice. Eur. J. Immunol. 33, 287–296.CrossRefPubMedGoogle Scholar
  28. Monneaux, F. and Muller, S. (2001) Key sequences involved in the spreading of the systemic autoimmune response to spliceosomal proteins. Scand. J. Immunol. 54, 45–54.CrossRefPubMedGoogle Scholar
  29. Monneaux, F. and Muller, S. (2002) Epitope spreading in systemic lupus erythematosus: identification of triggering peptide sequences. Arthritis Rheum. 46, 1430–1438.CrossRefPubMedGoogle Scholar
  30. Monneaux, F. and Muller, S. (2004) Peptide-based immunotherapy of systemic lupus erythematosus. Autoimmun. Rev. 3, 16–24.CrossRefPubMedGoogle Scholar
  31. Monneaux, F., Parietti, V., Briand, J.P. and Muller, S. (2004) Intramolecular T cell spreading in unprimed MRL/lpr mice: importance of the U1-70 k protein sequence 131–151. Arthritis Rheum. 50, 3232–3238.CrossRefPubMedGoogle Scholar
  32. Pinilla, C., Appel, J.R., Campbell, G.D., Buencamino, J., Benkirane, N., Muller, S. and Greenspan, N.S. (1998) All-D peptides recognized by an anti-carbohydrate antibody identified from a positional scanning library. J. Mol. Biol. 283, 1013–1025.CrossRefPubMedGoogle Scholar
  33. Pinnas, J.L., Northway, J.D. and Tan, E.M. (1973) Antinucleolar antibodies in human sera. J. Immunol. 111, 996–1004.PubMedGoogle Scholar
  34. Root-Bernstein, R. (2006) Peptides vaccines against arthritis. Future Rheumatol. 1, 339–344.CrossRefGoogle Scholar
  35. Sela, M. and Mozes, E. (2004) Therapeutic vaccines in autoimmunity. Proc. Natl. Acad. Sci. U.S.A. 101 Suppl 2, 14586–14592.CrossRefPubMedGoogle Scholar
  36. Singh, R.R. (2000) The potential use of peptides and vaccination to treat systemic lupus erythematosus. Curr. Opin. Rheumatol. 12, 399–406.CrossRefPubMedGoogle Scholar
  37. Stemmer, C., Quesnel, A., Prévost-Blondel, A., Zimmermann, C., Muller, S., Briand, J.P. and Pircher, H. (1999) Protection against lymphocytic choriomeningitis virus infection induced by a reduced peptide bond analogue of the H-2Db-restricted CD8(+) T cell epitope GP33. J. Biol. Chem. 274, 5550–5556.CrossRefPubMedGoogle Scholar
  38. Suen, J.L., Chuang, Y.H., Tsai, B.Y., Yau, P.M. and Chiang, B.L. (2004) Treatment of murine lupus using nucleosomal T cell epitopes identified by bone marrow-derived dendritic cells. Arthritis Rheum. 50, 3250–3259.CrossRefPubMedGoogle Scholar
  39. Toskos, G.C. (1999) Overview of cellular function in systemic lupus erytheatosus. In: Lahita R. (Ed), Systemic Lupus Erythematosus, 3rd ed., Academic Press, San Dego, pp. 17–54.Google Scholar
  40. Wu, H.Y. and Staines, N.A. (2004) A deficiency of CD4+CD25+ T cells permits the development of spontaneous lupus-like disease in mice, and can be reversed by induction of mucosal tolerance to histone peptide autoantigen. Lupus 13, 192–200.CrossRefPubMedGoogle Scholar
  41. Wu, H.Y., Ward, F.J. and Staines, N.A. (2002) Histone peptide-induced nasal tolerance: suppression of murine lupus. J. Immunol. 169, 1126–1134.PubMedGoogle Scholar
  42. Zinger, H., Eilat, E., Meshorer, A. and Mozes, E. (2003) Peptides based on the complementarity-determining regions of a pathogenic autoantibody mitigate lupus manifestations of (NZB x NZW)F1 mice via active suppression. Int. Immunol. 15, 205–214.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institut de Biologie Moléculaire et CellulaireStrasbourgFrance

Personalised recommendations