Modular Integer Arithmetic for Public Key Cryptography

  • Tim Güneysu
  • Christof Paar
Part of the Integrated Circuits and Systems book series (ICIR)


This chapter discusses building blocks for implementing popular public key cryptosystems, like RSA, Diffie-Hellman Key Exchange (DHKE) and Elliptic Curve Cryptography (ECC). Therefore, we briefly introduce field-based arithmetic on which most of recently established public key cryptosystems rely. As most popular fields, we give examples for architecture implementing efficient arithmetic operations over prime and binary extension fields for use in cryptographic applications.


Smart Card Finite Field Elliptic Curve Cryptosystems Modular Multiplication Discrete Logarithm Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    FIPS 186-2: Digital Signature Standard (DSS). 186-2, February 2000. Available for download at
  2. 2.
    D. N. Amanor, C. Paar, J. Pelzl, V. Bunimov, and M. Schimmler. Efficient Hardware Architectures for Modular Multiplication on FPGAs. In 2005 International Conference on Field Programmable Logic and Applications (FPL), Tampere, Finland, pages 539–542. IEEE Circuits and Systems Society, August 2005.Google Scholar
  3. 3.
    D. V. Bailey and C. Paar. Optimal Extension Fields for Fast Arithmetic in Public-Key Algorithms. In H. Krawczyk, editor, Advances in Cryptology — CRYPTO ’98, volume LNCS 1462, pages 472–485, Springer-Verlag, Berlin, 1998.Google Scholar
  4. 4.
    D. V. Bailey and C. Paar. Efficient Arithmetic in Finite Field Extensions with Application in Elliptic Curve Cryptography. Journal of Cryptology, 14(3):153–176, 2001.MathSciNetMATHGoogle Scholar
  5. 5.
    P. Barrett. Implementing the Rivest, Shamir and Adleman public-key encryption algorithm on standard digital signal processor. In A. Odlyzko, editor, Advances in Cryptology — CRYPTO’86, volume 263 of LNCS, pages 311–323. Springer-Verlag, Berlin 1987.Google Scholar
  6. 6.
    L. Batina, S. B. Ors, B. Preneel, and J. Vandewalle. Hardware architectures for public key cryptography. Integration, the VLSI Journal, 34(6):1–64, 2003.CrossRefGoogle Scholar
  7. 7.
    G. Blakley. A computer algorithm for calculating the product \(A \cdot B\) modulo M. IEEE Transactions on Computers, C-32(5):497–500, May 1983.CrossRefGoogle Scholar
  8. 8.
    D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. In J. Kilian, editor, Advances in Cryptology — CRYPTO 2001, volume LNCS 2139, pages 213–229. Springer-Verlag, Berlin 2001.Google Scholar
  9. 9.
    V. Bunimov and M. Schimmler. Area and Time Efficient Modular Multiplication of Large Integers. In IEEE 14th International Conference on Application-specific Systems, Architectures and Processors, June 2003.Google Scholar
  10. 10.
    A. Daly, L. Marnaney, and E. Popovici. Fast Modular Inversion in the Montgomery Domain on Reconfigurable Logic. Technical report, University College Cork, Cork, Ireland, 2004.Google Scholar
  11. 11.
    W. Diffie. Subject: Authenticity of Non-secret Encryption documents. World Wide Web, October 6, 1999. Email message sent to John Young. Available at
  12. 12.
    W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, IT-22(6):644–654, November 1976.CrossRefMathSciNetGoogle Scholar
  13. 13.
    T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    J. H. Ellis. The Story of Non-secret Encryption. Available at, December 16th, 1997.
  15. 15.
    I. E. T. Force. The Kerberos Network Authentication Service (V5). RFC 4120, July 2005.Google Scholar
  16. 16.
    D. M. Gordon. A survey of fast exponentiation methods. Journal of Algorithms, 27:129–146, 1998.CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    J. Guajardo, T. Güneysu, S. S. Kumar, C. Paar, and J. Pelzl. Efficient hardware implementation of finite fields with applications to cryptography. Acta Applicandae Mathematicae, 93:75–118, 2006.CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    J. Guajardo and C. Paar. Efficient Algorithms for Elliptic Curve Cryptosystems. In B. Kaliski, Jr., editor, Advances in Cryptology — CRYPTO ’97, volume 1294, pages 342–356, Springer Verlag, Berlin August 1997.Google Scholar
  19. 19.
    J. Hoffstein, D. Lieman, J. Pipher, and J. H. Silverman. NTRU: A Public Key Cryptosystem. Technical report, Aug. 11 1999.Google Scholar
  20. 20.
    K. Hwang. Computer Arithmetic: Principles, Architecture and Design. John Wiley & Sons, Inc. New York, 1979.Google Scholar
  21. 21.
    T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses in \(GF(2^m)\) using normal bases. Information and Computation, 78:171–177, 1988.CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    D. Knuth. The Art of Computer Programming, Seminumerical Algorithms, volume 2. Addison-Wesley, Reading, MA November 1971. 2nd printing.Google Scholar
  23. 23.
    D. E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, volume 2. Second edition, Addison-Wesley, Reading, MA 1973.Google Scholar
  24. 24.
    N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209, January 1987.CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    N. Koblitz. Hyperelliptic cryptosystems. Journal of Cryptology, 1(3):129–150, 1989.CrossRefMathSciNetGoogle Scholar
  26. 26.
    N. Koblitz. A Course in Number Theory and Cryptography. Springer Verlag, New York, 1994.Google Scholar
  27. 27.
    N. Koblitz. An Elliptic Curve Implementation of the Finite Field Digital Signature Algorithm. In H. Krawczyk, editor, Advances in Cryptology — CRYPTO 98, volume LNCS 1462, pages 327–337. Springer-Verlag, Berlin 1998.CrossRefGoogle Scholar
  28. 28.
    Ç. K. Koç, T. Acar, and B. S. Kaliski. Analyzing and comparing Montgomery multiplication algorithms. IEEE Micro, 16(3):26–33, June 1996.CrossRefGoogle Scholar
  29. 29.
    A. Lenstra and E. Verheul. Selecting Cryptographic Key Sizes. In H. Imai and Y. Zheng, editors, Practice and Theory in Public Key Cryptography–-PKC 2000, volume 1751, pages 446–465, January 2000.Google Scholar
  30. 30.
    R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN Progress Report, pages 42–44, 1987.Google Scholar
  31. 31.
    A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. The CRC Press series on discrete mathematics and its applications. 1997.Google Scholar
  32. 32.
    R. C. Merkle. Secure communications over insecure channels. Communications of the ACM, 21(4):294–299, 1978.CrossRefGoogle Scholar
  33. 33.
    P. Mihăilescu. Optimal Galois Field Bases Which Are Not Normal. Recent Results Session — FSE ’97, 1997.Google Scholar
  34. 34.
    V. S. Miller. Use of Elliptic Curves in Cryptography. In H. C. Williams, editor, Advances in Cryptology — CRYPTO ’85, volume 218, pages 417–426, August 1986.Google Scholar
  35. 35.
    P. Montgomery. Modular multiplication Without trial division. Mathematics of Computation, 44(170):519–521, April 1985.CrossRefMathSciNetMATHGoogle Scholar
  36. 36.
    National Institute of Standards and Technology (NIST). Recommended Elliptic Curves for Federal Government Use, July 1999. Scholar
  37. 37.
    J. Pollard. Monte Carlo methods for index computation mod p. Mathematics of Computation, 32(143):918–924, July 1978.MathSciNetMATHGoogle Scholar
  38. 38.
    R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.CrossRefMathSciNetMATHGoogle Scholar
  39. 39.
    B. Schneier. Crypto-Gram Newsletter. World Wide Web, May 15, 1998. Available at
  40. 40.
    K. Sloan. Comments on a computer algorithm for calculating the product \(A \cdot B\) modulo M. IEEE Transactions on Computers, C-34(3):290–292, March 1985.CrossRefMathSciNetGoogle Scholar
  41. 41.
    N. Smart. Elliptic curve cryptosystems over small fields of odd characteristic. Journal of Cryptology, 12(2):141–151, Spring 1999.CrossRefMathSciNetMATHGoogle Scholar
  42. 42.
    J. Solinas. Generalized Mersenne Numbers. Technical Report, CORR 99-39, Department of Combinatorics and Optimization, University of Waterloo, Canada,, 1999.Google Scholar
  43. 43.
    L. Song and K. K. Parhi. Low energy digit-serial/parallel finite field multipliers. Journal of VLSI Signal Processing, 19(2):149–166, June 1998.CrossRefGoogle Scholar
  44. 44.
    J. von zur Gathen and M. Nöcker. Exponentiation in Finite Fields: Theory and Practice. In T. Mora and H. Mattson, editors, Applied Algebra, Algebraic Algorithms and Error Correcting Codes — AAECC-12, volume LNCS 1255, pages 88–113. Springer-Verlag, 2000.Google Scholar
  45. 45.
    C. Walter. Logarithmic speed modular multiplication. Electronics Letters, 30(17):1397–1398, 1994.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Chair for Embedded Security, Ruhr University BochumBochumGermany

Personalised recommendations