Advertisement

Positive Mathematical Programming for Agricultural and Environmental Policy Analysis: Review and Practice

  • Bruno Henry de Frahan
  • Jeroen Buysse
  • Philippe Polomé
  • Bruno Fernagut
  • Olivier Harmignie
  • Ludwig Lauwers
  • Guido Van Huylenbroeck
  • Jef Van Meensel
Part of the International Series In Operations Research amp; Mana book series (ISOR, volume 99)

Positive mathematical programming (PMP) has renewed the interest in mathematical modelling of agricultural and environmental policies. This chapter explains first the main advantages and disadvantages of the PMP approach, followed by a presentation of an individual farm-based sector model, called SEPALE. The farm-based approach allows the introduction of differences in individual farm structures in the PMP modelling framework. Furthermore, a farm-level model gives the possibility of identifying the impacts according to various farm characteristics. Simulations of possible alternatives to the implementation of the Agenda 2000 mid-term review illustrate the value of such a model. This chapter concludes with some topics for further research to resolve some of the PMP limitations.

Keywords

Reference Period Farm Size Direct Payment Quadratic Cost Function Farm Accountancy Data Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Britz W., Heckelei, T., and Wolff, H., 2003, Symmetric positive equilibrium problem: a framework for rationalizing economic behavior with limited information: comment, Am. J. Agr. Econ. 85(4): 1078-81.CrossRefGoogle Scholar
  2. Buysse, J., Fernagut, B., Harmignie, O., Henry de Frahan, B., Lauwers, L., Polomé, P., Van Huylenbroeck, G., and Van Meensel, J., 2004, Modelling the impact of sugar reform on Belgian Agriculture, Selected paper presented at the International Conference on Policy Modelling, Paris, 30 June-2 July, 2004.Google Scholar
  3. Gohin, A., and Chantreuil, F., 1999, La programmation mathématique positive dans le modèles d’exploitation agricole: principes et importance du calibrage, Cahiers d’Economie et Sociologie Rurales 52: 59-78.Google Scholar
  4. Golan, A., Judge, G., and Miller, D.,1996, Maximum Entropy Econometrics, Wiley, Chichester UK.Google Scholar
  5. Graindorge C., Henry de Frahan, B., and Howitt, R., 2001, Analysing the effects of agenda 2000 using a CES calibrated model of Belgian agriculture, in Heckelei T., Witzke, H.P., and Henrichsmeyer, W. (eds.) Agricultural Sector Modelling and Policy Information Systems, Vauk Verlag, Kiel.Google Scholar
  6. Heckelei, T., and Britz, W., 2000, Positive mathematical programming with multiple data points: a cross-sectional estimation procedure, Cahiers d’Economie et Sociologie Rurales 57: 28-50.Google Scholar
  7. Heckelei, T., and Britz., W., 2001, Concept and explorative application of an eu-wide, regional agricultural sector model, in Heckelei T., Witzke, H.P., and Henrichsmeyer, W. (eds.) Agricultural Sector Modelling and Policy Information Systems, Vauk Verlag, Kiel.Google Scholar
  8. Heckelei, T., and Britz, W., 2005, Models based on positive mathematical programming: state of the art and further extensions, in Arfini, F. (ed.). Modelling Agricultural Policies: State of the Art and new Challenges, Monte Universita Parma, Parma.Google Scholar
  9. Heckelei, T., and Wolff, H., 2003, Estimation of constrained optimisation models for agricultural supply analysis based on generalised Maximum Entropy, Eur. Rev. Agric. Econ. 30(1): 27-50.CrossRefGoogle Scholar
  10. Helming, J.F.M., Peeters, L., and Veendendaal. P.J.J., 2001, Assessing the consequences of environmental policy scenarios in Flemish agriculture, in Heckelei T., Witzke, H.P., and Henrichsmeyer, W. (eds.) Agricultural Sector Modelling and Policy Information Systems, Vauk Verlag, Kiel.Google Scholar
  11. Henry de Frahan, B., Elouhichi, K., Harmignie, O., Polomé, P., Van Huylenbroeck, G., Buysse, J., Lauwers L., and Fermagut, B., 2004, La Politique Agricole Commune: une analyse de la réforme récente, Regards économiques 19: 2-13.Google Scholar
  12. Howitt, R.E., 1995a, Positive mathematical programming, Am. J. Agr. Econ. 77(2): 329-342.CrossRefGoogle Scholar
  13. Howitt, R.E 1995b. A calibration method for agricultural economic production models, J. Agr. Econ. 46(2): 147-159.CrossRefGoogle Scholar
  14. Howitt, R.E., 2005, PMP Based Production Models - Development and Integration, Paper presented at the organised session “PMP, Extensions and Alternative methods” for the XIth EAAE Congress, The Future of Rural Europe in the Global Agri-Food System, Copenhagen, Denmark, August 23-27, 2005.Google Scholar
  15. Judez, L., Chaya, C., Martinez, S., and Gonsalez, A.A., 2001, “Effects of the measures envisaged in ‘Agenda 2000’ on arable crop producers and beef and veal producers: an application of Positive Mathematical Programming to representative farms of a Spanish region” Agr. Syst. 67: 121-138.CrossRefGoogle Scholar
  16. Just, R.E., and Pope, R.D., 2001, The agricultural producer: theory and statistical measurement, in Gardner, B.L., and Rausser, G.C., (eds.), Handbook of Agricultural Economics Volume 1A - Agricultural Production, Elsevier, Amsterdam.Google Scholar
  17. Kumbhakar, S. C., 1994, A multiproduct symmetric generalized McFadden cost function, J. Prod. Ana. 5: 349-57.CrossRefGoogle Scholar
  18. Mundlak, Y., 2001, Production and supply, in Gardner, B.L., and Rausser, G.C., (eds.), Handbook of Agricultural Economics Volume 1A - Agricultural Production, Elsevier, Amsterdam.Google Scholar
  19. Paris, Q., 1997, CAPRI Meeting Follow-up, CAPRI Workshop in Reggio Emilia, Italy, May 1997.Google Scholar
  20. Paris, Q., 2001, Symmetric positive equilibrium problem: a framework for rationalizing economic behavior with limited information, Am. J. Agr. Econ. 83(4): 1049-1061.CrossRefGoogle Scholar
  21. Paris, Q., and Arfini, F., 2000, Frontier Cost Functions, Self-Selection, Price Risk, PMP and Agenda 2000, Eurotools Working Papers Series, No. 20, May 2000.Google Scholar
  22. Paris, Q., and Howitt, R.E., 1998, An analysis of ill-posed production problems using Maximum Entropy, Am. J. Agr. Econ. 80(1): 124-138.CrossRefGoogle Scholar
  23. Paris, Q., and Howitt, R.E., 2001, The multi-output and multi-input symmetric positive equilibrium problem, in Heckelei T., Witzke, H.P., and Henrichsmeyer, W. (eds.) Agricultural Sector Modelling and Policy Information Systems, Vauk Verlag, Kiel.Google Scholar
  24. Röhm, O., and Dabbert, S., 2003, Integrating agri-environmental programs into regional production models: an extension of positive mathematical programming, Am. J. Agr. Econ. 85 (1): 254-65.CrossRefGoogle Scholar
  25. Wolff, H., Heckelei, T., and Mittelhammer, R.C., 2004, Imposing Monotonicity and Curvature on Flexible Functional Forms, Selected Paper prepared for presentation at the American Agricultural Economics Association Annual Meeting, Denver, Colorado, August 1-4, 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Bruno Henry de Frahan
  • Jeroen Buysse
  • Philippe Polomé
  • Bruno Fernagut
    • 1
  • Olivier Harmignie
  • Ludwig Lauwers
    • 1
  • Guido Van Huylenbroeck
  • Jef Van Meensel
    • 1
  1. 1.Institute for Agricultural and Fisheries ResearchMerelbeke

Personalised recommendations